Yanqi Tu, Saiyu Liu, Rongjian Shi, Shani Yang, Kewei Gao and Xiaolu Pang
The purpose of this study is to investigate the effects of the cementite morphology on the hydrogen trapping behavior in low-alloy pipeline steel.
Abstract
Purpose
The purpose of this study is to investigate the effects of the cementite morphology on the hydrogen trapping behavior in low-alloy pipeline steel.
Design/methodology/approach
In this study, the hydrogen trapping behavior in low-alloy pipeline steel was quantitatively studied by a combination of microstructural observations, electrochemical hydrogen permeation experiments and thermal desorption spectroscopy (TDS) analyses.
Findings
P-1 and P-2 steels are two samples with different microstructures. The morphology of cementite precipitates in the P-1 and P-2 steels was different. Lamellar cementite is present in P-2 steel and only granular cementite in P-1 steel, which led to a better irreversible hydrogen trapping ability of P-2 steel, which was confirmed by subsequent hydrogen permeation and TDS experiments.
Originality/value
The study of these deep hydrogen trap sites is helpful in improving the hydrogen embrittlement resistance of low-alloy pipeline steels.
Details
Keywords
Yaojie Zheng, Huili Sun, Luchun Yan, Huisheng Yang, Kewei Gao, Xiaolu Pang and Alex A. Volinsky
The purpose of this study is to investigate the effect of ferrite on hydrogen embrittlement (HE) of the 17-4PH stainless steels.
Abstract
Purpose
The purpose of this study is to investigate the effect of ferrite on hydrogen embrittlement (HE) of the 17-4PH stainless steels.
Design/methodology/approach
The effects of ferrite on HE of the 17-4PH stainless steels were investigated by observing microstructure and conducting slow-strain-rate tensile tests and hydrogen permeability tests.
Findings
The microstructure of the ferrite-bearing sample is lath martensite and banded ferrite, and the ferrite-free sample is lath martensite. After hydrogen charging, the plasticity of the two steels is significantly reduced, along with the tensile strength of the ferrite-free sample. The HE susceptibility of the ferrite-bearing sample is significantly lower than the ferrite-free steel, and the primary fracture modes gradually evolved from typical dimple to quasi-cleavage and intergranular cracking. After aging at 480°C for 4 h and hydrogen charging for 12 h, the 40.9% HE susceptibility of ferrite-bearing samples was the lowest. In addition, the hydrogen permeation tests show that ferrite is a fast diffusion channel for hydrogen, and the ferrite-bearing samples have higher effective hydrogen diffusivity and lower hydrogen concentration.
Originality/value
There are a few studies of the ferrite effect on the HE properties of martensitic precipitation hardening stainless steel.
Details
Keywords
Yaojie Zheng, Sun Huili, Luchun Yan, Xiaolu Pang, Alex A. Volinsky and Kewei Gao
High-strength martensitic steels having strong hydrogen embrittlement (HE) susceptibility and the metal carbide (MC) nanoprecipitates of microalloying elements such as Nb, V, Ti…
Abstract
Purpose
High-strength martensitic steels having strong hydrogen embrittlement (HE) susceptibility and the metal carbide (MC) nanoprecipitates of microalloying elements such as Nb, V, Ti and Mo in the steel matrix can effectively improve the HE resistance of steels. This paper aims to review the effect of MC nanoprecipitates on the HE resistance of high-strength martensitic steels.
Design/methodology/approach
In this paper, the effects of MC nanoprecipitates on the HE resistance of high-strength martensitic steels are systematically described in terms of the types of MC nanoprecipitates, the influencing factors, along with numerical simulations.
Findings
The MC nanoprecipitates, which are fine and semicoherent with the matrix, effectively improve the HE resistance of steel through the hydrogen trapping effects and microstructure optimization, but its effect on the HE resistance of steel is controlled by its size, number and distribution state.
Originality/value
This paper summarizes the effects and mechanisms of MC nanoprecipitates on HE performance of high-strength martensitic steel and provides the theoretical basis for corrosion engineers to design high-strength martensitic steels with excellent HE resistance and improve production processes.
Details
Keywords
Zengli Wang, Qingyang Wang, Muming Hao, Xiaoying Li and Kewei Liu
The purpose of this study is to investigate the sealing performance of S-CO2 dry gas seals (DGSs) by considering the effects of pressure-induced deformation, thermal deformation…
Abstract
Purpose
The purpose of this study is to investigate the sealing performance of S-CO2 dry gas seals (DGSs) by considering the effects of pressure-induced deformation, thermal deformation and coupling deformation.
Design/methodology/approach
A hydrodynamic lubrication flow model of S-CO2 DGS was established, and the model was solved using the finite difference and finite element methods. The pressure-induced deformation and thermal deformation of the sealing ring, as well as the sealing performance under the effects of pressure-induced deformation, thermal deformation and coupling deformation, were obtained.
Findings
The deformation of the sealing ring is mainly thermal deformation. The influence of pressure-induced deformation on leakage and gas film stiffness is greater than that of thermal deformation and coupling deformation. However, thermal deformation has a greater impact on friction torque and minimum film thickness than pressure-induced deformation and coupling deformation. The influence of deformations on sealing performance is important.
Originality/value
The sealing performance of S-CO2 DGSs was analyzed considering the effect of pressure-induced deformation, thermal deformation and coupling deformation, which can provide a theoretical basis for S-CO2 DGS optimization design.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2023-0120/
Details
Keywords
Yuefei Ji, Long Hao, Jianqiu Wang, En-Hou Han and Wei Ke
The purpose of this paper is to optimize a suitable electrochemical method in evaluating the corrosion rate of structural materials of 20# carbon steel, P280GH carbon steel…
Abstract
Purpose
The purpose of this paper is to optimize a suitable electrochemical method in evaluating the corrosion rate of structural materials of 20# carbon steel, P280GH carbon steel, 17-4PH stainless steel, 304 stainless steel and Alloy 690TT in high-temperature and high-pressure (HTHP) water of pressurized water reactor secondary circuit system.
Design/methodology/approach
Weight-loss method has been used to obtain the corrosion rate value of each structural material in simulated HTHP water. Besides, linear polarization method and weak polarization curve-based three-point method and four-point method have been compared in obtaining a sound corrosion rate value from the potentiodynamic polarization curve. Scanning electron microscopy (SEM) and atomic force microscope have been used to characterize the microstructure and corrosion morphology of each structural material.
Findings
Although there is deviation in gaining the corrosion rate value compared to weight-loss test, the weak polarization curve-based four-point method has been found to be a suitable electrochemical method in gaining corrosion rate value of structural materials in HTHP waters.
Originality/value
This paper proposes a suitable and reliable electrochemical method in gaining the corrosion rate value of structural materials in HTHP waters. The proposed weak polarization curve-based four-point method provides a timesaving and high-efficient way in corrosion rate evaluation of secondary circuit structural materials and thus has a potential application in nuclear power plants.
Details
Keywords
Karthie S., Zuvairiya Parveen J., Yogeshwari D. and Venkadeshwari E.
The purpose of this paper is to present the design of a compact microstrip bandpass filter (BPF) in dual-mode configuration loaded with cross-loop and square ring slots on a…
Abstract
Purpose
The purpose of this paper is to present the design of a compact microstrip bandpass filter (BPF) in dual-mode configuration loaded with cross-loop and square ring slots on a square patch resonator for C-band applications.
Design/methodology/approach
In the proposed design, the dual-mode response for the filter is realized with two transmission zeros (TZs) by the insertion of a perturbation element at the diagonal corner of the square patch resonator with orthogonal feed lines. Such TZs at the edges of the passband result in better selectivity for the proposed BPF. Moreover, the cross-loop and square ring slots are etched on a square patch resonator to obtain a miniaturized BPF.
Findings
The proposed dual-mode microstrip filter fabricated in RT/duroid 6010 substrate using PCB technology has a measured minimum insertion loss of 1.8 dB and return loss better than 24.5 dB with a fractional bandwidth (FBW) of 6.9%. A compact size of 7.35 × 7.35 mm2 is achieved for the slotted patch resonator-based dual-mode BPF at the center frequency of 4.76 GHz. As compared with the conventional square patch resonator, a size reduction of 61% is achieved with the proposed slotted design. The feasibility of the filter design is confirmed by the good agreement between the measured and simulated responses. The performance of the proposed filter structure is compared with other dual-mode filter works.
Originality/value
In the proposed work, a compact dual-mode BPF is reported with slotted structures. The conventional square patch resonator is deployed with cross-loop and square ring slots to design a dual-mode filter with a square perturbation element at its diagonal corner. The proposed filter exhibits compact size and favorable performance compared to other dual-mode filter works reported in literature. The aforementioned design of the dual-mode BPF at 4.76 GHz is suitable for applications in the lower part of the C-band.
Details
Keywords
Ru Zhao, Da-Hai Xia, Shi-Zhe Song and Wenbin Hu
This paper aims to investigate the stress corrosion cracking (SCC) process of sensitized 304 stainless steel during the slow strain rate test by using the electrochemical noise…
Abstract
Purpose
This paper aims to investigate the stress corrosion cracking (SCC) process of sensitized 304 stainless steel during the slow strain rate test by using the electrochemical noise (EN) technique.
Design/methodology/approach
EN data are interpreted based on chaos and wavelet analyses, and correlation dimension and wavelet energy distribution are used as indicators for SCC process identification.
Findings
Experimental results reveal that the corrosion potential abruptly decreases from 180 to 100 mV at 6,300 s and the current increases from 10 to 100 nA accordingly, which is attributed to passive film breakdown and crack initiation. Chaos and wavelet analyses results reveal that, as crack initiates, the correlation dimensions increase from 1.2 to 1.9, and the corresponding distribution frequencies of maximum relative wavelet energy change from high frequency to low frequency.
Originality/value
SCC is monitored in lab, and crack initiation and propagation are identified by chaos and wavelet analyses. This work lays the foundation for SCC detection in field using EN.
Details
Keywords
Rafiu King Raji, Xuhong Miao, Shu Zhang, Yutian Li, Ailan Wan and Charles Frimpong
The use of conductive yarns or wires to design and construct fabric-based strain sensors is a research area that is gaining much attention in recent years. This is based on a…
Abstract
Purpose
The use of conductive yarns or wires to design and construct fabric-based strain sensors is a research area that is gaining much attention in recent years. This is based on a profound theory that conductive yarns will have a variation in resistance if subjected to tension. What is not clear is to which types of conductive yarns are most suited to delivering the right sensitivity. The purpose of this paper is to look at strain sensors knitted with conductive composite and coated yarns which include core spun, blended, coated and commingled yarns. The conductive components are stainless steel and silver coating respectively with polyester as the nonconductive part. Using Stoll CMS 530 flat knitting machine, five samples each were knitted with the mentioned yarn categories using 1×1 rib structure. Sensitivity tests were carried out on the samples. Piezoresistive response of the samples reveals that yarns with heterogeneous external structures showed both an increase and a decrease in resistance, whereas those with homogenous structures responded linearly to stress. Stainless steel based yarns also had higher piezoresistive range compared to the silver-coated ones. However, comparing all the knitted samples, silver-coated yarn (SCY) proved to be more suitable for strain sensor as its response to tension was unidirectional with an appreciable range of change in resistance.
Design/methodology/approach
Conductive composite yarns, namely, core spun yarn (CSY1), core spun yarn (CSY2), silver-coated blended yarn (SCBY), staple fiber blended yarn (SFBY) and commingled yarn (CMY) were sourced based on specifications and used to knit strain sensor samples. Electro-mechanical properties were investigated by stretching on a fabric tensile machine to ascertain their suitability for a textile strain sensor.
Findings
In order to generate usable signal for a strain sensor for a conductive yarn, it must have persistent and consistent conductive links, both externally and internally. In the case of composite yarns such as SFBY, SCBY and CMY where there were no consistent alignment and inter-yarn contact, resistance change fluctuated. Among all six different types of yarns used, SCY presented the most suitable result as its response to tension was unidirectional with an appreciable range of change in resistance.
Originality/value
This is an original research carried out by the authors who studied the electro-mechanical properties of some composite conductive yarns that have not been studied before in textile strain sensor research. Detailed research methods, results and interpretation of the results have thus been presented.