Search results

1 – 10 of 15
Article
Publication date: 13 June 2019

Rui Zhang, Lei Zhao, Dan Xie, Jinlong Song, Wendong Zhang, Lihu Pan and Yanhua Zhang

This study aims to simulate and test the performance of a transmitting and receiving capacitive micro-machined ultrasonic transducer (CMUT). Aimed at detecting demand of the CMUT…

201

Abstract

Purpose

This study aims to simulate and test the performance of a transmitting and receiving capacitive micro-machined ultrasonic transducer (CMUT). Aimed at detecting demand of the CMUT, a matched integrated adjustment circuit was designed through analyzing processing methods of transducer’s weak echo signal.

Design/methodology/approach

Based on the analysis of CMUT array structure and work principle, the CMUT units are designed and the dynamic performance analysis of SIMULINK is given according to the demand of underwater detecting. A transceiver isolation circuit is used to make transmission mode and receiving mode separate. A detection circuit is designed based on the transimpedance amplifier to achieve extraction of high-frequency and weak signal.

Findings

Through experimentation, the effectiveness of the CMUT performance simulation and the transceiver integrated adjustment circuit were verified. In addition, the test showed that CMUT with 400 kHz frequency has wider bandwidth and better dynamic characteristics than other similar transducers.

Originality/value

This paper provides a theoretical basis and design reference for the development and application of CMUT technology.

Article
Publication date: 18 January 2016

Rui Zhang, Wendong Zhang, Changde He, Jinlong Song, Linfeng Mu, Juan Cui, Yongmei Zhang and Chenyang Xue

The purpose of this paper was to develop a novel capacitive micromachined ultrasonic transducer (CMUT) reception and transmission linear array for underwater imaging at 400 kHz…

Abstract

Purpose

The purpose of this paper was to develop a novel capacitive micromachined ultrasonic transducer (CMUT) reception and transmission linear array for underwater imaging at 400 kHz. Compared with traditional CMUTs, the developed transducer array offers higher electromechanical coupling coefficient and higher directivity performance.

Design/methodology/approach

The configuration of the newly developed CMUT reception and transmission array was determined by the authors’ previous research into new element structures with patterned top electrodes and into directivity simulation analysis. Using the Si-Silicon on insulator (Si-SOI) bonding technique and the principle of acoustic impedance matching, the CMUT array was fabricated and packaged. In addition, underwater imaging system design and testing based on the packaged CMUT 1 × 16 array were completed.

Findings

The simulation results showed that the optimized CMUT array configuration was selected. Furthermore, the designed configuration of the CMUT 1 × 16 linear array was good enough to guarantee high angular resolution. The underwater experiments were conducted to demonstrate that this CMUT array can be of great benefit in imaging applications.

Practical implications

Based on our research, the CMUT linear array has good directivity and good impedance matching with water and can be used for obstacle avoidance, distance measurement and imaging underwater.

Originality/value

This research provides a basis for CMUT directivity theory and array design. CMUT array presented in this paper has good directivity and has been applied in the underwater imaging, resulting in a huge market potential in underwater detection systems.

Details

Sensor Review, vol. 36 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 11 October 2021

Wenchao Xi, Boxue Song, Jinlong Dong, Tianqi Zhang, Tianbiao Yu and Jun Wang

Laser cladding has been used in the field of repairing damaged parts of machine tools due to its advantages of less processing restrictions and easy formation of a good…

Abstract

Purpose

Laser cladding has been used in the field of repairing damaged parts of machine tools due to its advantages of less processing restrictions and easy formation of a good metallurgical bond with the base material. However, the mechanical properties of the coating sometimes cannot meet the process requirements. Therefore, the purpose of this paper is to prepare coatings with high microhardness and flexural strength.

Design/methodology/approach

The YCF102 alloy powder was mixed with different contents of Co and tested for laser cladding on AISI 1045 substrate under the same process parameters. The main phase composition of the coating was revealed by the XRD results. The main chemical composition of the coating was determined by the SEM and EDS results. In addition, the effect of Co content on the microstructure, microhardness and flexural strength of the coatings was investigated.

Findings

The results show that when the Co content is 2 wt% and 4 wt%, Co does not form compounds with other elements, but is uniformly distributed in the coating. And when the Co content is 6 wt% and 8 wt%, the Co reacts with Fe in the coating and generates Co3Fe7 in situ. The increase in Co did not result in a monotonic change in microhardness, but significantly improved the flexural strength and the flatness of the microstructure of the coating. When the Co content of the mixed powder is 8 wt%, the coating has high microhardness and flexural strength.

Originality/value

Co/YCF102 composite coating with high microhardness and flexural strength was prepared. This paper provides a theoretical and practical basis for research in the area of repairing damaged parts of machine tools by laser cladding.

Details

Rapid Prototyping Journal, vol. 28 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 September 2024

Yongming Wang, Jinlong Wang, Qi Zhou, Sai Feng and Xiaomin Wang

This study aims to address the issues of limited pipe diameter adaptability and low inspection efficiency of current pipeline inspection robots, a new type of pipeline inspection…

Abstract

Purpose

This study aims to address the issues of limited pipe diameter adaptability and low inspection efficiency of current pipeline inspection robots, a new type of pipeline inspection robot capable of adapting to various pipe diameters was designed.

Design/methodology/approach

The diameter-changing mechanism uses a multilink elastic telescopic structure consisting of telescopic rods, connecting rods and wheel frames, driven by a single motor with a helical drive scheme. A geometric model of the position relationships of the hinge points was established based on the two extreme positions of the diameter-changing mechanism.

Findings

A pipeline inspection robot was designed using a simple linkage agency, which significantly reduced the weight of the robot and enhanced its adaptive pipe diameter ability. The analysis determined that the robot could accommodate pipe diameters ranging from 332 mm to 438 mm. A static equilibrium equation was established for the robot in the hovering state, and the minimum pressing force of the wheels against the pipe wall was determined to be 36.68 N. After experimental testing, the robots could successfully pass a height of 15 mm, demonstrating the good obstacle capacity of the robot.

Practical implications

This paper explores and proposes a new type of multilink elastic telescopic variable diameter pipeline inspection robot, which has the characteristics of strong adaptability and flexible operation, which makes it more competitive in the field of pipeline inspection robots and has great potential market value.

Originality/value

The robot is characterized by the innovative design of a multilink elastic telescopic structure and the use of a single motor to drive the wheel for spiral motion. On the basis of reducing the weight of the robot, it has good pipeline adaptability, climbing ability and obstacle-crossing ability.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 September 2018

Fupeng Cheng, Jinglong Cui, Shuai Xu, Song Li, Pengchao Zhang and Juncai Sun

The purpose of this study is to improve the performance of AISI 430 stainless steel (430 SS) in increasing its oxidation resistance, suppressing coating spalling and cracking…

Abstract

Purpose

The purpose of this study is to improve the performance of AISI 430 stainless steel (430 SS) in increasing its oxidation resistance, suppressing coating spalling and cracking, sustaining appropriate conductivity and blocking Cr evaporation as an interconnect material for intermediate temperature solid oxide fuel cells; a protective co-contained coating is formed onto stainless steel via the surface alloying process and followed by thermal oxidation.

Design/methodology/approach

In this work, oxidation behavior of coated specimen is studied during isothermal and cyclic oxidation measurements. Moreover, the conductivity is also investigated by area specific resistance (ASR) measurement.

Findings

Co-contained spinel layer shows an outstanding performance in preventing oxidation and improving conductivity compared with uncoated specimens. The protective spinel coating also reduces the ASR for coated specimen (0.0576O cm2) as compared to the uncoated specimen (1.87296O cm2) after isothermal oxidation.

Originality/value

The probable mechanism of co-contained alloy converting into spinel and the spinel transfer electron is presented.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 30 July 2024

Li Dong, Jinlong Chen and Weipeng Wu

This study examines how maturity mismatch, a specific type of financial structure of firms, affects corporate outward foreign direct investment (OFDI).

Abstract

Purpose

This study examines how maturity mismatch, a specific type of financial structure of firms, affects corporate outward foreign direct investment (OFDI).

Design/methodology/approach

Using the number of newly established foreign subsidiaries in a given year as firm-level OFDI and utilizing data from Chinese listed firms between 2007 and 2022, we employ a negative binomial regression model to examine the impact of corporate maturity mismatch on the OFDI. We also make efforts to ensure the robustness of the result, such as employing an exogenous policy to establish a difference-in-difference model.

Findings

The empirical result indicates that maturity mismatch inhibits firms' OFDI. Additional test shows that maturity mismatch increases firms' financing costs and reduces firms' research and development (R&D) investment and that the negative impact of maturity mismatch on OFDI is predominantly observed in firms with high financial constraints and low R&D intensity, indicating that maturity mismatch may affect firms' OFDI through the financing cost channel and the R&D investment channel.

Originality/value

Corporate maturity mismatch is common in China and similar emerging markets. However, research on the economic consequences of maturity mismatch, especially its impact on firms' overseas expansions, is rare. This study establishes the relationship between corporate maturity mismatch and OFDI, contributes to the literature on the relationship between financial factors and OFDI, and provides policy implications for emerging market countries.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 14 January 2022

Haibo Xue, Xin Zhao, Pokachev Nikolay and Jiayi Qin

Family dinner on Lunar New Year's Eve is the most important and most ritualized feast for families in China. It is the time for the entire family to reunite. Families gather…

Abstract

Purpose

Family dinner on Lunar New Year's Eve is the most important and most ritualized feast for families in China. It is the time for the entire family to reunite. Families gather together to reflect their past and talk about the future. Through the lens of consumer culture theories, this study explores how Chinese consumers construct family identity.

Design/methodology/approach

Based on constant comparative analysis of primary data including in-depth interviews and participant observation, and secondary data including historical archives, cultural tracing, documentary reports and essays, the authors deconstruct the consumption rituals of family dinner on Chinese Lunar New Year's Eve. The authors focus on four aspects, including participants, place, time and related activities, and analyze Chinese consumers' ritual experiences.

Findings

The authors’ findings show how young consumers construct and strengthen individual self-identity, relational identity and family identity in various ways through consumption and ritual practices during Chinese Lunar New Year celebration.

Originality/value

The study of family dinner on Lunar New Year's Eve helps the authors understand contemporary consumer culture in three aspects. First, it helps the authors understand the relationship between consumption and culture. Second, the study shows the changes and continuities of consumption rituals. Third, the research highlights the experience of “home” among contemporary Chinese consumers.

Details

Journal of Contemporary Marketing Science, vol. 5 no. 1
Type: Research Article
ISSN: 2516-7480

Keywords

Article
Publication date: 11 March 2022

Ying Lv, Jinlong Feng, Guangbin Wang and Hua Li

This study aims to improve the maneuverability and stability of four-wheel chassis in a small paddy field; a front axle swing steering four-wheel chassis with optimal steering is…

Abstract

Purpose

This study aims to improve the maneuverability and stability of four-wheel chassis in a small paddy field; a front axle swing steering four-wheel chassis with optimal steering is designed.

Design/methodology/approach

When turning, the front inner wheel stops and the rear inner wheel is in the following state. The hydraulic drive system of the walking wheel adopts a driving mode in which two front-wheel motors are connected in series and two rear wheel motors in parallel. The chassis uses a combination of a gasoline engine with a water cooling system, a CVT continuously variable transmission and a hydraulic drive system to increase the control capability. The front axle rotary chassis adopts a step-less variable speed engine and a hydraulic control system to solve the hydraulic stability of the chassis in uphill and downhill conditions so as to effectively control the over-speed of the wheel-side drive motors. Through the quadratic orthogonal rotation combination design test, the mathematical models of uphill and downhill front-wheel pressures and test factors are established.

Findings

The results show that the chassis stability is optimal when the back pressure is 0.5 MPa, and the rotating slope is 4°. The uphill and downhill pressures of the front wheels are 2.38 MPa and 1.5 MPa, respectively.

Originality/value

The influence of external changes on the pressure of hydraulic motors is studied through experiments, which lays the foundation for further research.

Details

Journal of Engineering, Design and Technology, vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 8 March 2021

Jinlong Shen, Tong Zhang, Jimin Xu, Xiaojun LIU and Kun Liu

This paper aims to improve the tribological performance of grease-lubricated spherical plain bearings (SPBs) under heavy load, dimple-type textures were prepared by laser on the…

Abstract

Purpose

This paper aims to improve the tribological performance of grease-lubricated spherical plain bearings (SPBs) under heavy load, dimple-type textures were prepared by laser on the outer surface of the inner ring. The influence of roughness parameters of a textured surface on reducing friction coefficient and temperature rise was also explored.

Design/methodology/approach

This study adopts a laser processing method to fabricate dimple-type textures. Three-dimensional roughness parameters were used to characterize the textured surfaces. The friction coefficients of five SPBs with surface texture and one original commercially available SPB without surface texture under different nominal loads were measured on a self-established test rig. The data of temperature rise were obtained by nine embedded thermal couples.

Findings

The results indicate that SPBs with textures generally exhibit lower friction coefficients than the original SPB without textures. The dimple depth has a significant influence on improving the tribological performance, which coincides with the analysis by surface roughness parameters. A textured surface with negative Ssk and high Vvc has the minimum temperature rise.

Originality/value

As it is too difficult to arrange sensors into heavy-load SPBs, there are few reports about the temperature characteristics. Through nine embedded thermal couples, the distribution of temperature rise on the inner ring of SPBs was given in this study. The positive effect of surface texture on reducing temperature rise and friction coefficient was verified, which is beneficial for the design of heavy-load SPBs.

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 March 2019

Zhenhan Yao, Xiaoping Zheng, Han Yuan and Jinlong Feng

Based on the error analysis, the authors proposed a new kind of high accuracy boundary element method (BEM) (HABEM), and for the large-scale problems, the fast algorithm, such as…

Abstract

Purpose

Based on the error analysis, the authors proposed a new kind of high accuracy boundary element method (BEM) (HABEM), and for the large-scale problems, the fast algorithm, such as adaptive cross approximation (ACA) with generalized minimal residual (GMRES) is introduced to develop the high performance BEM (HPBEM). It is found that for slender beams, the stress analysis using iterative solver GMRES will difficult to converge. For the analysis of slender beams and thin structures, to enhance the efficiency of GMRES solver becomes a key problem in the development of the HPBEM. The purpose of this paper is study on the preconditioning method to solve this convergence problem, and it is started from the 2D BE analysis of slender beams.

Design/methodology/approach

The conventional sparse approximate inverse (SAI) based on adjacent nodes is modified to that based on adjacent nodes along the boundary line. In addition, the authors proposed a dual node variable merging (DNVM) preprocessing for slender thin-plate beams. As benchmark problems, the pure bending of thin-plate beam and the local stress analysis (LSA) of real thin-plate cantilever beam are applied to verify the effect of these two preconditioning method.

Findings

For the LSA of real thin-plate cantilever beams, as GMRES (m) without preconditioning applied, it is difficult to converge provided the length to height ratio greater than 50. Even with the preconditioner SAI or DNVM, it is also difficult to obtain the converged results. For the slender real beams, the iteration of GMRES (m) with SAI or DNVM stopped at wrong deformation state, and the computation failed. By changing zero initial solution to the analytical displacement solution of conventional beam theory, GMRES (m) with SAI or DNVM will not be stopped at wrong deformation state, but the stress error is still difficult to converge. However, by GMRES (m) combined with both SAI and DNVM preconditioning, the computation efficiency enhanced significantly.

Originality/value

This paper presents two preconditioners: DNVM and a modified SAI based on adjacent nodes along the boundary line of slender thin-plate beam. In the LSA, by using GMRES (m) combined with both DNVM and SAI, the computation efficiency enhanced significantly. It provides a reference for the further development of the 3D HPBEM in the LSA of real beam, plate and shell structures.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 15