Hao Li, Shuai Zhang, Zhiran Yi, Jie Li, Aihua Sun, Jianjun Guo and Gaojie Xu
This work aims to evaluate the influence of rheological properties of building materials on the bonding quality and ultimate tensile strength in the fused deposition modeling…
Abstract
Purpose
This work aims to evaluate the influence of rheological properties of building materials on the bonding quality and ultimate tensile strength in the fused deposition modeling (FDM) process, through the investigation of parts printed by semi-crystalline and amorphous resins. Little information is currently available about the influence of the crystalline nature on FDM-printed part quality.
Design/methodology/approach
Semi-crystalline polyamide 12 and amorphous acrylonitrile butadiene styrene (ABS) were used to assess the influence of rheological properties on bonding quality and the tensile strength, by varying three important process parameters: materials, liquefier temperature and raster orientation. A fractography of both tensile and freeze-fractured samples was also investigated.
Findings
The rheological properties, mainly the melt viscosity, were found to have a significant influence on the bonding quality of fused filaments. Better bonding quality and higher tensile strength of FDM parts printed with semi-crystalline PA12, as compared with amorphous ABS, are suggested to be a result of higher initial sintering rates owing to the lower melt viscosity of PA12 at low shear rates. Near-full dense PA12 parts were obtained by FDM.
Originality/value
This project provides a variety of data and insight regarding the effect of materials properties on the mechanical performance of FDM-printed parts. The results showed that FDM technique allows the production of PA12 parts with adequate mechanical performance, overcoming the greatest limitation of a dependence on amorphous thermoplastics as a feedstock for the production of prototypes.
Details
Keywords
Yongxing Guo, Jianjun Fu, Longqi Li and Li Xiong
Centrifugal model tests can accelerate the characterization of landslides and demonstrate the form of slope failure, which is an important measure to research its instability…
Abstract
Purpose
Centrifugal model tests can accelerate the characterization of landslides and demonstrate the form of slope failure, which is an important measure to research its instability mechanisms. Simply observing the slope landslide before and after a centrifugal model test cannot reveal the processes involved in real-time deformation. Electromagnetic sensors have severed as an existing method for real-time measurement, however, this approach has significant challenges, including poor signal quality, interference, and complex implementation and wiring schemes. This paper aims to overcome the shortcomings of the existing measurement methods.
Design/methodology/approach
This work uses the advantages of fiber Bragg grating (FBG) sensors with their small form-factor and potential for series multiplexing in a single fiber to demonstrate a monitoring strategy for model centrifugal tests. A slope surface deformation displacement sensor, FBG anchor sensor and FBG anti-slide piling sensor have been designed. These sensors are installed in the slope models, while centrifugal acceleration tests under 100 g are carried out.
Findings
FBG sensors obtain three types of deformation information, demonstrating the feasibility and validity of this measurement strategy.
Originality/value
The experimental results provide important details about instability mechanisms of a slope, which has great significance in research on slope model monitoring techniques and slope stability.
Details
Keywords
Xuepeng Zhan, Jianjun Wu, Mingzhi Wang, Yu Hui, Hongfei Wu, Qi Shang and Ruichao Guo
This paper aims to first apply more advanced anisotropic yield criterions as Yld91 and Yld2004 to spherical indentation simulations, and investigate plastic anisotropy identified…
Abstract
Purpose
This paper aims to first apply more advanced anisotropic yield criterions as Yld91 and Yld2004 to spherical indentation simulations, and investigate plastic anisotropy identified from indentation simulations following different yield criterions (Hill48, Yld91, Yld2004) to discover laws. It also aims to compare the difference in plastic anisotropy identified from indentation on three yield criterions and evaluate the applicability of plastic anisotropy.
Design/methodology/approach
This paper uses indentation simulations on different yield criterions to identify plastic anisotropy. First, the trust-region techniques based on the nonlinear least-squares method are used to determine anisotropy coefficients of Yld91 and Yld2004. Then, Yld91 and Yld2004 are implemented into ABAQUS software using user-defined material (UMAT) subroutines with the proposed universal structure. Finally, through considering comprehensively the key factors, the locations of the optimal data acquisition points in indentation simulations on different yield criterions are determined. And, the identified stress–strain curves are compared with experimental data.
Findings
This paper discovers that indentation on Yld2004 is able to fully identify difference in equivalent plastic strain between 0° and 90° directions when indentation depth ht is relatively smaller. And, this research demonstrates conclusively that plastic anisotropy identified from indentation on Yld2004 and Yld91 is more applicable at larger strains than that on Hill48, and that on Yld2004 is more applicable than that on Yld91, overall. In addition, the method on the determination of the locations of the optimal data acquisition points is demonstrated to be also valid for anisotropic material.
Originality/value
This paper first investigates plastic anisotropic properties and laws identified from indentation simulations following more advanced anisotropic yield criterions and provides reference for later research.
Details
Keywords
Ruichao Guo, Jianjun Wu and Yinxiang Ren
Accurate prediction of residual stress requires precise knowledge of the constitutive behavior of as-quenched material. This study aims to model the flow stress behavior for…
Abstract
Purpose
Accurate prediction of residual stress requires precise knowledge of the constitutive behavior of as-quenched material. This study aims to model the flow stress behavior for as-quenched Al-Mg-Si alloy.
Design Methodology Approach
In the present work, the flow behavior of as-quenched Al-Mg-Si alloy is studied by the hot compression tests at various temperatures (573–723 K), strain rates (0.1–1 s−1) and cooling rates (1–10 K/s). Flow stress behavior is then experimentally observed, and an Arrhenius model is used to predict the flow behavior. However, due to the fact that materials parameters and activation energy do not remain constant, the Arrhenius model has an unsatisfied prediction for the flow behavior. Considering the effects of temperatures, strain rates and cooling rates on constitutive behavior, a revised Arrhenius model is developed to describe the flow stress behavior.
Findings
The experimental results show that the flow stress increases by the increasing cooling rate, increasing strain state and decreasing temperature. In comparison to the experimental data, the revised Arrhenius model has an excellent prediction for as-quenched Al-Mg-Si alloy.
Originality Value
With the revised Arrhenius model, the flow behaviors at different quenching conditions can be obtained, which is an essential step to the residual stress prediction when the model is implemented in a finite element code, e.g. ABAQUS, in the future.
Details
Keywords
Ting Wang, Hanfei Guo, Jianjun Qiao, Xiaoxue Liu and Zhixin Fan
To address the lack of data in this field and determine the relationship between the coefficient of friction and the interference between locomotive wheels and axles, this study…
Abstract
Purpose
To address the lack of data in this field and determine the relationship between the coefficient of friction and the interference between locomotive wheels and axles, this study evaluates the theoretical relationship between the coefficient of friction and the interference under elastic deformation.
Design/methodology/approach
When using numerical analyses to study the mechanical state of the contacting components of the wheels and axle, the interference between the axle parts and the coefficient of friction between the axle parts are two important influencing factors. Currently, as the range of the coefficient of friction between the wheel and axle in interference remains unknown, it is generally considered that the coefficient of friction is only related to the materials of the friction pair; the relationship between the interference and the coefficient of friction is often neglected.
Findings
A total of 520 press-fitting experiments were conducted for 130 sets of wheels and axles of the HXD2 locomotive with 4 types of interferences, in order to obtain the relationship between the coefficient of friction between the locomotive wheel and axle and the amount of interference. These results are expected to serve as a reference for selecting the coefficient of friction when designing axle structures with the rolling stock, research on the press-fitting process and evaluations of the fatigue life.
Originality/value
The study provides a basis for the selection of friction coefficient and interference amount in the design of locomotive wheels and axles.
Details
Keywords
Jianjun Zhang, Qibo Ni, Jing Wang and Feng Guo
Vibration exists widely in all machineries working under high speed. The unpredictability of vibration and the change of the relative surface speed may result in difficulties in…
Abstract
Purpose
Vibration exists widely in all machineries working under high speed. The unpredictability of vibration and the change of the relative surface speed may result in difficulties in the elastohydrodynamic lubrication (EHL) analysis. By far, few studies on EHL relating to vibration have been published. The purpose of the present study is to investigate the effect of the vertical vibrations and the influence of temperature on the thermal EHL contacts.
Design/methodology/approach
The lubricant was assumed to be Newtonian fluid. The time-dependent numerical solutions were achieved instant after instant in each period of the vibration. At each instant, the pressure field was solved with a multi-level technique, the surface deformation was solved with a multi-level multi-integration method and the temperature filed was solved with a finite different scheme through a sweeping progress. The periodic error was checked at each end of the vibration period until the responses of pressure, film thickness and temperature were all periodic functions with the frequency of the roller’s vibrations.
Findings
The results reveal that normal vibration produces little drastic change of pressure, film thickness and temperature in EHL. Under some conditions, the vibrations of the roller can produce transient dimples within the contact conjunction. It is also showed that the lubrication in the same sliding is better than the opposite sliding.
Research limitations/implications
For the unpredictability of vibration, it is not easy to do the experiment to realize a real comparison with numerical results. The reach does not show any verification and consider the effect of non-Newtonian fluid.
Originality/value
The effect of the vertical vibrations on the thermal EHL point contact hast been studied. The effects of both the amplitude and the frequency on the predicted load-carrying capacity, minimum film thickness, center pressure and center temperature and the coefficient of friction were investigated. The role of the thermal effect was given.
Details
Keywords
Zengkun Zhang, Jianjun Wu, Qi Shang, Qiang Jiang, Junzhou Yang and Ruichao Guo
When manufacturing an arc-shaped tube product using push bending process, the transition zone and outfeed zone will inevitably occur. Transition zone and outfeed zone are caused…
Abstract
Purpose
When manufacturing an arc-shaped tube product using push bending process, the transition zone and outfeed zone will inevitably occur. Transition zone and outfeed zone are caused by the kinematical motion of mobile tools. The existence of transition zone and outfeed zone will lead to a big deviation between the forming product and desired shape. To improve the forming quality of arc-shaped products in push bending, the transition zone and outfeed zone are investigated in this paper.
Design/methodology/approach
A piecewise function is used to describe the bending characteristics along bending line, in which a series of vibration parameters are extracted and considered as control values.
Findings
The new strategy is helpful for finding the relationship between tools motion and curvature distribution and improving the bending lines design procedure in flexible push bending.
Originality/value
The new strategy is helpful for finding the relationship between tools motion and curvature distribution and improving the bending lines design procedure in flexible push bending.
Details
Keywords
Jiawei Xu, Baofeng Zhang, Jianjun Lu, Yubing Yu, Haidong Chen and Jie Zhou
The importance of the agri-food supply chain in both food production and distribution has made the issue of its development a critical concern. Based on configuration theory and…
Abstract
Purpose
The importance of the agri-food supply chain in both food production and distribution has made the issue of its development a critical concern. Based on configuration theory and congruence theory, this research investigates the complex impact of supply chain concentration on financial growth in agri-food supply chains.
Design/methodology/approach
The cluster analysis and response surface methodology are employed to analyse the data collected from 207 Chinese agri-food companies from 2010 to 2022.
Findings
The results indicate that different combination patterns of supply chain concentration can lead to different levels of financial growth. We discover that congruent supplier and customer concentration is beneficial for companies’ financial growth. This impact is more pronounced when the company is in the agricultural production stage of agri-food supply chains. Post-hoc analysis indicates that there exists an inverted U-shaped relationship between the overall levels of supply chain concentration and financial growth.
Practical implications
Our research uncovers the complex interplay between supply chain base and financial outcomes, thereby revealing significant ramifications for agri-food supply chain managers to optimise their strategies for exceptional financial growth.
Originality/value
This study proposes a combined approach of cluster analysis and response surface analysis for analysing configuration issues in supply chain management.
Details
Keywords
Yongxing Guo, Dongsheng Zhang, Jianjun Fu, Shaobo Liu, Shengzhuo Zhang and Fangdong Zhu
The purpose of this paper is to investigate an online monitoring strategy that incorporates fiber Bragg gratings (FBGs) for deformation displacement detection, with the background…
Abstract
Purpose
The purpose of this paper is to investigate an online monitoring strategy that incorporates fiber Bragg gratings (FBGs) for deformation displacement detection, with the background that slope deformation monitoring is crucial to engineering safety supervision and disaster prevention.
Design/methodology/approach
A “beam element” method has been proposed, introduced and experimentally verified in detail. The deformation displacement along a flexible bar can be obtained based on this method, using the distributed strain detected by the FBGs embedded in the bar. A novel sensor structure containing inclinometer casings and a series of connected flexible pipes with FBGs embedded has been proposed. Based on the features of this structure, two FBG deformation sensors have been manufactured and installed into a slope. A matched monitoring station which permits real-time supervision, warning and remote access across the Internet was established and operated.
Findings
Displacement data from September 2013 to August 2014 are obtained, which is basically consistent with the practical situation.
Originality/value
The FBG deformation sensors demonstrated a robust and reliable measurement performance, which is promising for real-time disaster warning in slope engineering.
Details
Keywords
Junzhou Yang, Jianjun Wu, Qianwen Zhang, Yinxiang Ren, Han Ruolan and Kaiwei Wang
With the discussion on the linear relationship of determined material parameters, this study aims to propose a new method to analyze the deformation mechanism.
Abstract
Purpose
With the discussion on the linear relationship of determined material parameters, this study aims to propose a new method to analyze the deformation mechanism.
Design/methodology/approach
A modified constitutive model based on the hyperbolic sine Arrhenius equation has been established, which is applied to describe the flow behavior of Ti-6Al-4V alloy during the superplastic forming (SPF).
Findings
The modified constitutive model in this work has a good ability to describe the flow behavior for Ti-6Al-4V in SPF. Besides, a deformation map of titanium material is obtained based on the parameters. As the supplement, finite element models of high-temperature tensile tests are carried out as the application of the constitutive model.
Originality/value
The relationship between constitutive model parameters and forming mechanism is established, which is a new angle in rheological behavior research and constitutive model analysis.