Search results

1 – 2 of 2
Article
Publication date: 1 March 1990

François Bay and Jean‐Loup Chenot

In order to optimize production and save material, numerical simulation is becoming more and more used in industrial forging processes.

Abstract

In order to optimize production and save material, numerical simulation is becoming more and more used in industrial forging processes.

Details

Engineering Computations, vol. 7 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 March 1996

Jean‐Loup Chenot, E. Massoni and JL. Fourment

Focuses on the inverse problems arising from the simulation of forming processes. Considers two sets of problems: parameter identification and shape optimization. Both are solved…

Abstract

Focuses on the inverse problems arising from the simulation of forming processes. Considers two sets of problems: parameter identification and shape optimization. Both are solved using an optimization method for the minimization of a suitable objective function. The convergence and convergence rate of the method depend on the accuracy of the derivatives of this function. The sensitivity analysis is based on a discrete approach, e.g. the differentiation of the discrete problem equations. Describes the method for non‐linear, non‐steady‐state‐forming problems involving contact evolution. First, it is applied to the parameter identification and to the torsion test. It shows good convergence properties and proves to be very efficient for the identification of the material behaviour. Then, it is applied to the tool shape optimization in forging for a two‐step process. A few iterations of the inverse method make it possible to suggest a suitable shape for the preforming tools.

Details

Engineering Computations, vol. 13 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 2 of 2