Search results
1 – 2 of 2François Bay and Jean‐Loup Chenot
In order to optimize production and save material, numerical simulation is becoming more and more used in industrial forging processes.
Jean‐Loup Chenot, E. Massoni and JL. Fourment
Focuses on the inverse problems arising from the simulation of forming processes. Considers two sets of problems: parameter identification and shape optimization. Both are solved…
Abstract
Focuses on the inverse problems arising from the simulation of forming processes. Considers two sets of problems: parameter identification and shape optimization. Both are solved using an optimization method for the minimization of a suitable objective function. The convergence and convergence rate of the method depend on the accuracy of the derivatives of this function. The sensitivity analysis is based on a discrete approach, e.g. the differentiation of the discrete problem equations. Describes the method for non‐linear, non‐steady‐state‐forming problems involving contact evolution. First, it is applied to the parameter identification and to the torsion test. It shows good convergence properties and proves to be very efficient for the identification of the material behaviour. Then, it is applied to the tool shape optimization in forging for a two‐step process. A few iterations of the inverse method make it possible to suggest a suitable shape for the preforming tools.
Details