To read this content please select one of the options below:

Inverse problems in finite element simulation of metal forming processes

Jean‐Loup Chenot (Centre de Mise en Forme des Matériaux, Ecole des Mines de Paris, France)
E. Massoni (Centre de Mise en Forme des Matériaux, Ecole des Mines de Paris, France)
JL. Fourment (Centre de Mise en Forme des Matériaux, Ecole des Mines de Paris, France)

Engineering Computations

ISSN: 0264-4401

Article publication date: 1 March 1996

413

Abstract

Focuses on the inverse problems arising from the simulation of forming processes. Considers two sets of problems: parameter identification and shape optimization. Both are solved using an optimization method for the minimization of a suitable objective function. The convergence and convergence rate of the method depend on the accuracy of the derivatives of this function. The sensitivity analysis is based on a discrete approach, e.g. the differentiation of the discrete problem equations. Describes the method for non‐linear, non‐steady‐state‐forming problems involving contact evolution. First, it is applied to the parameter identification and to the torsion test. It shows good convergence properties and proves to be very efficient for the identification of the material behaviour. Then, it is applied to the tool shape optimization in forging for a two‐step process. A few iterations of the inverse method make it possible to suggest a suitable shape for the preforming tools.

Keywords

Citation

Chenot, J., Massoni, E. and Fourment, J. (1996), "Inverse problems in finite element simulation of metal forming processes", Engineering Computations, Vol. 13 No. 2/3/4, pp. 190-225. https://doi.org/10.1108/02644409610114530

Publisher

:

MCB UP Ltd

Copyright © 1996, MCB UP Limited

Related articles