Search results
1 – 5 of 5Qinglong Li, Dongsoo Jang, Dongeon Kim and Jaekyeong Kim
Textual information about restaurants, such as online reviews and food categories, is essential for consumer purchase decisions. However, previous restaurant recommendation…
Abstract
Purpose
Textual information about restaurants, such as online reviews and food categories, is essential for consumer purchase decisions. However, previous restaurant recommendation studies have failed to use textual information containing essential information for predicting consumer preferences effectively. This study aims to propose a novel restaurant recommendation model to effectively estimate the assessment behaviors of consumers for multiple restaurant attributes.
Design/methodology/approach
The authors collected 1,206,587 reviews from 25,369 consumers of 46,613 restaurants from Yelp.com. Using these data, the authors generated a consumer preference vector by combining consumer identity and online consumer reviews. Thereafter, the authors combined the restaurant identity and food categories to generate a restaurant information vector. Finally, the nonlinear interaction between the consumer preference and restaurant information vectors was learned by considering the restaurant attribute vector.
Findings
This study found that the proposed recommendation model exhibited excellent performance compared with state-of-the-art models, suggesting that combining various textual information on consumers and restaurants is a fundamental factor in determining consumer preference predictions.
Originality/value
To the best of the authors’ knowledge, this is the first study to develop a personalized restaurant recommendation model using textual information from real-world online restaurant platforms. This study also presents deep learning mechanisms that outperform the recommendation performance of state-of-the-art models. The results of this study can reduce the cost of exploring consumers and support effective purchasing decisions.
研究目的
关于餐厅的文本信息, 如在线评论和食品分类, 对于消费者的购买决策产生至关重要。然而, 先前的餐厅推荐研究未能有效利这些文本信息去预测消费者喜好。本研究提出了一种新颖的餐厅推荐模型, 以有效估计消费者对多个餐厅属性的评估行为。
研究方法
我们从 Yelp.com 收集了来自25,369名消费者对 46,613 家餐厅的 1,206,587 条评论。利用这些数据, 我们通过结合消费者身份和在线消费者评论生成了消费者偏好向量。然后, 我们结合了餐厅身份和食品分类来生成餐厅信息向量。最后, 考虑到餐厅属性向量, 本研究调查了消费者偏好和餐厅信息向量之间的非线性交互关系。
研究发现
我们发现, 所提出的推荐模型相比于之前最先进的模型表现出更优秀的性能, 这表明结合消费者和餐厅的各种文本信息是预测消费者喜好的基本因素。
研究创新/价值
据我们所知, 这是第一项利用来自真实在线餐厅平台的文本信息开发个性化餐厅推荐模型的研究。本研究还提出了胜过最先进模型的深度学习机制。本研究的结果可以降低探索消费者行为的成本并支持有效的购买决策。
Details
Keywords
Jaeseung Park, Xinzhe Li, Qinglong Li and Jaekyeong Kim
The existing collaborative filtering algorithm may select an insufficiently representative customer as the neighbor of a target customer, which means that the performance in…
Abstract
Purpose
The existing collaborative filtering algorithm may select an insufficiently representative customer as the neighbor of a target customer, which means that the performance in providing recommendations is not sufficiently accurate. This study aims to investigate the impact on recommendation performance of selecting influential and representative customers.
Design/methodology/approach
Some studies have shown that review helpfulness and consistency significantly affect purchase decision-making. Thus, this study focuses on customers who have written helpful and consistent reviews to select influential and representative neighbors. To achieve the purpose of this study, the authors apply a text-mining approach to analyze review helpfulness and consistency. In addition, they evaluate the performance of the proposed methodology using several real-world Amazon review data sets for experimental utility and reliability.
Findings
This study is the first to propose a methodology to investigate the effect of review consistency and helpfulness on recommendation performance. The experimental results confirmed that the recommendation performance was excellent when a neighbor was selected who wrote consistent or helpful reviews more than when neighbors were selected for all customers.
Originality/value
This study investigates the effect of review consistency and helpfulness on recommendation performance. Online review can enhance recommendation performance because it reflects the purchasing behavior of customers who consider reviews when purchasing items. The experimental results indicate that review helpfulness and consistency can enhance the performance of personalized recommendation services, increase customer satisfaction and increase confidence in a company.
Details
Keywords
Qinglong Li, Jaeseung Park and Jaekyeong Kim
The current study investigates the impact on perceived review helpfulness of the simultaneous processing of information from multiple cues with various central and peripheral cue…
Abstract
Purpose
The current study investigates the impact on perceived review helpfulness of the simultaneous processing of information from multiple cues with various central and peripheral cue combinations based on the elaboration likelihood model (ELM). Thus, the current study develops and tests hypotheses by analyzing real-world review data with a text mining approach in e-commerce to investigate how information consistency (rating inconsistency, review consistency and text similarity) influences perceived helpfulness. Moreover, the role of product type is examined in online consumer reviews of perceived helpfulness.
Design/methodology/approach
The current study collected 61,900 online reviews, including 600 products in six categories, from Amazon.com. Additionally, 51,927 reviews were filtered that received helpfulness votes, and then text mining and negative binomial regression were applied.
Findings
The current study found that rating inconsistency and text similarity negatively affect perceived helpfulness and that review consistency positively affects perceived helpfulness. Moreover, peripheral cues (rating inconsistency) positively affect perceived helpfulness in reviews of experience goods rather than search goods. However, there is a lack of evidence to demonstrate the hypothesis that product types moderate the effectiveness of central cues (review consistency and text similarity) on perceived helpfulness.
Originality/value
Previous studies have mainly focused on numerical and textual factors to investigate the effect on perceived helpfulness. Additionally, previous studies have independently confirmed the factors that affect perceived helpfulness. The current study investigated how information consistency affects perceived helpfulness and found that various combinations of cues significantly affect perceived helpfulness. This result contributes to the review helpfulness and ELM literature by identifying the impact on perceived helpfulness from a comprehensive perspective of consumer review and information consistency.
Details
Keywords
Jaekyeong Kim, Pil-Sik Chang, Sung-Byung Yang, Ilyoung Choi and Byunghyun Lee
Because the food service industry is more dependent on customer contact and human resources than other industries, it is crucial to understand the factors influencing employee job…
Abstract
Purpose
Because the food service industry is more dependent on customer contact and human resources than other industries, it is crucial to understand the factors influencing employee job satisfaction to ensure that employees provide satisfactory service to customers. However, few studies have incorporated employee reviews of job portals into their research. Many job seekers tend to trust company reviews posted by employees on job portals based on the information provided by the company itself. Thus, this study utilized company reviews and job satisfaction ratings from employees in the food service industry on a job portal site, Job Planet, to conduct mixed-method research.
Design/methodology/approach
For qualitative research, we applied the Latent Dirichlet Allocation (LDA) model to food service industry company reviews to identify 10 job satisfaction factors considered important by employees. For quantitative research, four algorithms were used to predict job satisfaction ratings: regression tree, multilayer perceptron (MLP), random forest and XGBoost. Thus, we generated predictor variables for six cases using the probability values of topics and job satisfaction ratings on a five-point scale through LDA and used them to build prediction algorithms.
Findings
The analysis showed that algorithm accuracy performed differently in each of the six cases, and overall, factors such as work-life balance and work environment have a significant impact on predicting job satisfaction ratings.
Originality/value
This study is significant because its methodology and results suggest a new approach based on data analysis in the field of human resources, which can contribute to the operation and planning of corporate human resources management in the future.
Details
Keywords
Xinzhe Li, Qinglong Li, Dasom Jeong and Jaekyeong Kim
Most previous studies predicting review helpfulness ignored the significance of deep features embedded in review text and instead relied on hand-crafted features. Hand-crafted and…
Abstract
Purpose
Most previous studies predicting review helpfulness ignored the significance of deep features embedded in review text and instead relied on hand-crafted features. Hand-crafted and deep features have the advantages of high interpretability and predictive accuracy. This study aims to propose a novel review helpfulness prediction model that uses deep learning (DL) techniques to consider the complementarity between hand-crafted and deep features.
Design/methodology/approach
First, an advanced convolutional neural network was applied to extract deep features from unstructured review text. Second, this study used previous studies to extract hand-crafted features that impact the helpfulness of reviews and enhance their interpretability. Third, this study incorporated deep and hand-crafted features into a review helpfulness prediction model and evaluated its performance using the Yelp.com data set. To measure the performance of the proposed model, this study used 2,417,796 restaurant reviews.
Findings
Extensive experiments confirmed that the proposed methodology performs better than traditional machine learning methods. Moreover, this study confirms through an empirical analysis that combining hand-crafted and deep features demonstrates better prediction performance.
Originality/value
To the best of the authors’ knowledge, this is one of the first studies to apply DL techniques and use structured and unstructured data to predict review helpfulness in the restaurant context. In addition, an advanced feature-fusion method was adopted to better use the extracted feature information and identify the complementarity between features.
研究目的
大多数先前预测评论有用性的研究忽视了嵌入在评论文本中的深层特征的重要性, 而主要依赖手工制作的特征。手工制作和深层特征具有高解释性和预测准确性的优势。本研究提出了一种新颖的评论有用性预测模型, 利用深度学习技术来考虑手工制作特征和深层特征之间的互补性。
研究方法
首先, 采用先进的卷积神经网络从非结构化的评论文本中提取深层特征。其次, 本研究利用先前研究中提取的手工制作特征, 这些特征影响了评论的有用性并增强了其解释性。第三, 本研究将深层特征和手工制作特征结合到一个评论有用性预测模型中, 并使用Yelp.com数据集对其性能进行评估。为了衡量所提出模型的性能, 本研究使用了2,417,796条餐厅评论。
研究发现
广泛的实验验证了所提出的方法优于传统的机器学习方法。此外, 通过实证分析, 本研究证实了结合手工制作和深层特征可以展现出更好的预测性能。
研究创新
据我们所知, 这是首个在餐厅评论预测中应用深度学习技术, 并结合了结构化和非结构化数据来预测评论有用性的研究之一。此外, 本研究采用了先进的特征融合方法, 更好地利用了提取的特征信息, 并识别了特征之间的互补性。
Details