Jussi Putaala, Olli Salmela, Olli Nousiainen, Tero Kangasvieri, Jouko Vähäkangas, Antti Uusimäki and Jyrki Lappalainen
The purpose of this paper is to describe the behavior of different lead-free solders (95.5Sn3.8Ag0.7Cu, i.e. SAC387 and Sn7In4.1Ag0.5Cu, i.e. SAC-In) in thermomechanically loaded…
Abstract
Purpose
The purpose of this paper is to describe the behavior of different lead-free solders (95.5Sn3.8Ag0.7Cu, i.e. SAC387 and Sn7In4.1Ag0.5Cu, i.e. SAC-In) in thermomechanically loaded non-collapsible ball grid array (BGA) joints of a low-temperature co-fired ceramic (LTCC) module. The validity of a modified Engelmaier’s model was tested to verify its capability to predict the characteristic lifetime of an LTCC module assembly implementable in field applications.
Design/methodology/approach
Five printed wiring board (PWB) assemblies, each carrying eight LTCC modules, were fabricated and exposed to a temperature cycling test over a −40 to 125°C temperature range to determine the characteristic lifetimes of interconnections in the LTCC module/PWB assemblies. The failure mechanisms of the test assemblies were verified using scanning acoustic microscopy, scanning electron microscopy (SEM) and field emission SEM investigation. A stress-dependent Engelmaier’s model, adjusted for plastic-core solder ball (PCSB) BGA structures, was used to predict the characteristic lifetimes of the assemblies.
Findings
Depending on the joint configuration, characteristic lifetimes of up to 1,920 cycles were achieved in the thermal cycling testing. The results showed that intergranular (creep) failures occurred primarily only in the joints containing Sn7In4.1Ag0.5Cu solder. Other primary failure mechanisms (mixed transgranular/intergranular, separation of the intermetallic compound/solder interface and cracking in the interface between the ceramic and metallization) were observed in the other joint configurations. The modified Engelmaier’s model was found to predict the lifetime of interconnections with good accuracy. The results confirmed the superiority of SAC-In solder over SAC in terms of reliability, and also proved that an air cavity structure of the module, which enhances its radio frequency (RF) performance, did not degrade the reliability of the second-level interconnections of the test assemblies.
Originality/value
This paper shows the superiority of SAC-In solder over SAC387 solder in terms of reliability and verifies the applicability of the modified Engelmaier’s model as an accurate lifetime prediction method for PCSB BGA structures for the presented LTCC packages for RF/microwave telecommunication applications.
Details
Keywords
O. Nousiainen, O. Salmela, J. Putaala and T. Kangasvieri
The purpose of this paper is to describe the effect of indium alloying on the thermal fatigue endurance of Sn3.8Ag0.7Cu solder in low‐temperature co‐fired ceramic (LTCC) modules…
Abstract
Purpose
The purpose of this paper is to describe the effect of indium alloying on the thermal fatigue endurance of Sn3.8Ag0.7Cu solder in low‐temperature co‐fired ceramic (LTCC) modules with land grid array (LGA) joints and the feasibility of using a recalibrated Engelmaier model to predict the lifetime of LGA joints as determined with a test assembly.
Design/methodology/approach
Test assemblies were fabricated and exposed to a temperature cycling test over a temperature range of −40‐125°C. Organic printed wiring board (PWB) material with a low coefficient of thermal expansion was used to reduce the global thermal mismatch of the assembly. The characteristic lifetime, θ, of the test assemblies was determined using direct current resistance measurements. The metallurgy and failure mechanisms of the interconnections were verified using scanning acoustic microscopy, an optical microscope with polarized light, and scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) investigations. Lifetime predictions of the test assemblies were calculated using the recalibrated Engelmaier model.
Findings
This work showed that indium alloying increased the characteristic lifetime of LGA joints by 15 percent compared with Sn3.8Ag0.7Cu joints. SEM/EDS analysis showed that alloying changed the composition, size, and distribution of intermetallic compounds within the solder matrix. It was also observed that a solid‐state phase transformation (Cu,Ni)6Sn5(→ (Ni,Cu)3Sn4 occurred at the Ni/(Cu,Ni)6Sn5 interface. Moreover, the results pointed out that individual recalibration curves for ceramic package/PWB assemblies with high (≥ 10 ppm/°C) and low (≈ 3‐4 ppm/°C) global thermal mismatches and different package thicknesses should be determined before the lifetime of LGA‐type assemblies can be predicted accurately using the recalibrated Engelmaier model.
Originality/value
The results proved that indium alloying of LGA joints can be done using In‐containing solder on pre‐tinned pads of an LTCC module, despite the different liquidus temperatures of the In‐containing and Sn3.8Ag0.7Cu solders. The characteristic metallurgical features and enhanced thermal fatigue endurance of the In‐alloyed SnAgCu joints were also determined. Finally, this work demonstrated the problems that exist in predicting the lifetime of ceramic packages with LGA joints using analytical modeling, and proposals for developing the recalibrated Engelmaier model to achieve more accurate results with different ceramic packages/PWB assemblies are given.
Details
Keywords
Balázs Illés, Olivér Krammer, Attila Géczy and Tamás Garami
The purpose of this paper is to present a novel and alternative method for the characterization of isotropic conductive adhesive (ICA) joints’ conductivity by the calculation of…
Abstract
Purpose
The purpose of this paper is to present a novel and alternative method for the characterization of isotropic conductive adhesive (ICA) joints’ conductivity by the calculation of the mean intercept length of conductive flakes in the cured joint. ICAs are widely used in the field of hybrid electronics or special printed circuit board applications, such as temperature sensitive or flexible circuits. The main quality parameters of the ICA joints are the conductivity and the mechanical strength.
Design/methodology/approach
For the experiments, one-component Ag-filled thermoset ICA paste was used on FR4 printed circuit test board to join zero-ohm resistors. Six different curing temperatures were applied: 120, 150, 175, 210, 230 and 250°C. The conductivity of the joints was measured in situ during the curing process. Micrographs were taken from the cross-sectioned joints, and the mean intercept length was calculated on them after image processing steps.
Findings
Results of the measured conductivity and the mean intercept length were compared, and acceptable correlation was found for what can be used for characterizing the conductibility of ICA joints.
Research limitations/implications
Investigating and characterizing the conductivity of ICA joints by an image processing method.
Originality/value
The main advantage of this method compared to the electrical measurements is that the conductivity characterization is possible on any kind of component. Therefore, this method can be used in any appliances not only in test circuits.
Details
Keywords
Grzegorz Tomaszewski, Jerzy Potencki and Tadeusz Wałach
This paper aims to study the packing density of printed paths on different substrate materials. It presents problems which appear when the necessity of printing one or more narrow…
Abstract
Purpose
This paper aims to study the packing density of printed paths on different substrate materials. It presents problems which appear when the necessity of printing one or more narrow paths occurs.
Design/methodology/approach
A piezoelectric printhead containing nozzles with a diameter of 35 µm was used for printing nanoparticle silver ink on different polymer substrates which were treated by plasma or not treated at all. The shape, defects, resistance and printing parameters for the printed paths were analysed.
Findings
The obtained results allow the identification of the sources of the technological problems in obtaining a high packing density of the paths in a small area of substrate and the repeatable prints.
Research limitations/implications
The study could have limited universality because of the chosen research method; printhead, ink, substrate materials and process parameters were arbitrarily selected. The authors encourage the study of other kinds of conductive inks, treatment methods and printing process parameters.
Practical implications
The study includes practically useful information about widths, shapes, defects and the resistance of the paths printed using different technological parameters.
Originality/value
The study presents the results of original empirical research on problems of the packing density of inkjet printed paths on a small area of substrate and identifies problems that must be resolved to obtain effective interconnections in the inkjet technology.
Details
Keywords
Shaoyi Liu, Songjie Yao, Song Xue, Benben Wang, Hui Jin, Chenghui Pan, Yinwei Zhang, Yijiang Zhou, Rui Zeng, Lihao Ping, Zhixian Min, Daxing Zhang and Congsi Wang
Surface mount technology (SMT) is widely used and plays an important role in electronic equipment. The purpose of this paper is to reveal the effects of interface cracks on the…
Abstract
Purpose
Surface mount technology (SMT) is widely used and plays an important role in electronic equipment. The purpose of this paper is to reveal the effects of interface cracks on the fatigue life of SMT solder joint under service load and to provide some valuable reference information for improving service reliability of SMT packages.
Design/methodology/approach
A 3D geometric model of SMT package is established. The mechanical properties of SMT solder joint under thermal cycling load and random vibration load were solved by 3D finite element analysis. The fatigue life of SMT solder joint under different loads can be calculated by using the modified Coffin–Manson model and high-cycle fatigue model.
Findings
The results revealed that cracks at different locations and propagation directions have different effect on the fatigue life of the SMT solder joint. From the location of the cracks, Crack 1 has the most significant impact on the thermal fatigue life of the solder joint. Under the same thermal cycling conditions, its life has decreased by 46.98%, followed by Crack 2, Crack 4 and Crack 3. On the other hand, under the same random vibration load, Crack 4 has the most significant impact on the solder joint fatigue life, reducing its life by 81.39%, followed by Crack 1, Crack 3 and Crack 2. From the crack propagation direction, with the increase of crack depth, the thermal fatigue life of the SMT solder joint decreases sharply at first and then continues to decline almost linearly. The random vibration fatigue life of the solder joint decreases continuously with the increase of crack depth. From the crack depth of 0.01 mm to 0.05 mm, the random vibration fatigue life decreases by 86.75%. When the crack width increases, the thermal and random vibration fatigue life of the solder joint decreases almost linearly.
Originality/value
This paper investigates the effects of interface cracks on the fatigue life and provides useful information on the reliability of SMT packages.
Details
Keywords
O. Nousiainen, T. Kangasvieri, K. Kautio, R. Rautioaho and J. Vähäkangas
The purpose of this paper is to investigate the effect of electroless NiAu (ENIG) deposition on the failure mechanisms and characteristic lifetimes of three different…
Abstract
Purpose
The purpose of this paper is to investigate the effect of electroless NiAu (ENIG) deposition on the failure mechanisms and characteristic lifetimes of three different non‐collapsible lead‐free 2nd level interconnections in low‐temperature co‐fired ceramic (LTCC)/printed wiring board (PWB) assemblies.
Design/methodology/approach
Five LTCC module/PWB assemblies were fabricated and exposed to a temperature cycling test over a −40 to 125°C temperature range. The characteristic lifetimes of these assemblies were determined using direct current resistance measurements. The failure mechanisms of the test assemblies were verified using X‐ray and scanning acoustic microscopy, optical microscopy with polarized light, scanning electron microscope (SEM)/energy dispersive spectroscopy and field emission‐SEM investigation.
Findings
A stable intermetallic compound (IMC) layer is formed between the Ni deposit and solder matrix during reflow soldering. The layer thickness does not grow excessively and the interface between the layer and solder is practically free from Kirkendall voids after the thermal cycling test (TCT) over a temperature range of −40 to 125°C. The adhesion between the IMC layer and solder matrix is sufficient to prevent separation of this interface, resulting in intergranular (creep) or mixed transgranular/intergranular (fatigue/creep) failure within the solder matrix. However, the thermal fatigue endurance of the lead‐free solder has a major effect on the characteristic lifetime, not the deposit material of the solder land. Depending on the thickness of the LTCC substrate and the composition of the lead‐free solder alloy, characteristic lifetimes of over 2,000 cycles are achieved in the TCT.
Originality/value
The paper investigates in detail the advantages and disadvantages of ENIG deposition in LTCC/PWB assemblies with a large global thermal mismatch (ΔCTE≥10 ppm/°C), considering the design and manufacturing stages of the solder joint configuration and its performance under harsh accelerated test conditions.
Details
Keywords
O. Nousiainen, T. Kangasvieri, R. Rautioaho and J. Vähäkangas
The purpose of this paper is to present a novel Sn7In4.1Ag0.5Cu/Plastic Core Solder Ball/Sn4Ag0.5Cu composite solder joint configuration for second‐level ball grid array (BGA…
Abstract
Purpose
The purpose of this paper is to present a novel Sn7In4.1Ag0.5Cu/Plastic Core Solder Ball/Sn4Ag0.5Cu composite solder joint configuration for second‐level ball grid array (BGA) interconnections of low temperature co‐fired ceramic (LTCC) modules and the thermal fatigue durability of the configuration. The purpose of using the Sn7In4.1Ag0.5Cu solder was to increase the creep/fatigue resistance of critical regions on the LTCC side of the joint.
Design/methodology/approach
Test LTCC module/printed wiring board (PWB) assemblies were fabricated and exposed into temperature cycling tests over the 0 to 100°C and −40 to 125°C temperature ranges. The characteristic lifetimes of these assemblies were determined using DC resistance measurements. The failure mechanisms of the test assemblies were verified using scanning acoustic microscopy, FE‐SEM, and SEM investigation.
Findings
The test assemblies were exposed to thermal cycling tests (TCT) over test ranges of 0 to 100°C and −40 to 125°C, and characteristic lifetimes of over 5,500 and 1,400 cycles, respectively, were achieved. Compared with Sn4Ag0.5Cu/plastic‐core solder balls (PCSB)/Sn4Ag0.5Cu joints, the characteristic lifetime of the SAC‐In/PCSB/SAC joints increased over 55 per cent in the harsh (−40 to 125°C) TCT conditions. In the milder test conditions (0 to 100°C), the characteristic lifetime of the SAC‐In/PCSB/SAC joints increased 30 per cent compared with the SAC/PCSB/SAC joints.
Originality/value
The results proved that the enhanced creep/fatigue properties of the solder matrix resulted in satisfactory lifetime durations in the present lead‐free composite solder joints and, consequently, different primary failure mechanisms on the LTCC side due to the use of indium alloyed solder. Thus, the present joint configuration is assumed to be a promising solution for the further design of a reliable second‐level solder interconnection in LTCC/PWB assemblies with a high‐global thermal mismatch.
Details
Keywords
O. Nousiainen, T. Kangasvieri, R. Rautioaho and J. Vähäkangas
The purpose of this paper is to investigate the thermal fatigue endurance of two lead‐free solders used in composite solder joints consisting of plastic core solder balls (PCSB…
Abstract
Purpose
The purpose of this paper is to investigate the thermal fatigue endurance of two lead‐free solders used in composite solder joints consisting of plastic core solder balls (PCSB) and different solder materials, in order to assess their feasibility in low‐temperature cofired ceramic (LTCC)/printed wiring board (PWB) assemblies.
Design/methodology/approach
The characteristic lifetime of these joints was determined in a thermal cycling test (TCT) over a temperature range of −40‐125°C. Their failure mechanisms were analyzed after the TCT using scanning acoustic and optical microscopy, scanning electronic microscope, and field emission scanning electronic microscope investigation.
Findings
The results showed that four different failure mechanisms existed in the test assemblies cracking in the mixed ceramic/metallization zone; or a mixed transgranular/intergranular failure occurred at the low temperature extreme; whereas an intergranular failure within the solder matrix; or separation of the intermetallic layer and the solder matrix occurred at the high temperature extreme. Sn3Ag0.5Cu0.5In0.05Ni was more resistant to mixed transgranular/intergranular failure, but had poor adhesion with the Ag3Sn layer. On the other hand, cracking in the mixed ceramic/metallization zone typically existed in the joints with Sn2.5Ag0.8Cu0.5Sb solder, whereas the joints with Sn3Ag0.5Cu0.5In0.05Ni were practically free of these cracks. The characteristic lifetimes of both test joint configurations were at the same level (800‐1,000) compared with joints consisted of Sn4Ag0.5Cu solder and PCSB studied earlier.
Originality/value
The study investigated in detail the failure mechanisms of the Sn3Ag0.5Cu0.5In0.05Ni and Sn2.5Ag0.8Cu0.5Sb solders under harsh accelerated test conditions. It was proved that these solders behaved similarly to the ternary SnAgCu solders in these conditions and no improvement can be achieved by utilizing these solders in the non‐collpasible solder joints of LTCC/PWB assemblies.
Details
Keywords
Sung Yi and Robert Jones
This paper aims to present a machine learning framework for using big data analytics to predict the reliability of solder joints. The purpose of this study is to accurately…
Abstract
Purpose
This paper aims to present a machine learning framework for using big data analytics to predict the reliability of solder joints. The purpose of this study is to accurately predict the reliability of solder joints by using big data analytics.
Design/methodology/approach
A machine learning framework for using big data analytics is proposed to predict the reliability of solder joints accurately.
Findings
A machine learning framework for predicting the life of solder joints accurately has been developed in this study. To validate its accuracy and efficiency, it is applied to predict the long-term reliability of lead-free Sn96.5Ag3.0Cu0.5 (SAC305) for three commonly used surface finishes such OSP, ENIG and IAg. The obtained results show that the predicted failure based on the machine learning method is much more accurate than the Weibull method. In addition, solder ball/bump joint failure modes are identified based on various solder joint failures reported in the literature.
Originality/value
The ability to predict thermal fatigue life accurately is extremely valuable to the industry because it saves time and cost for product development and optimization.