Search results

1 – 3 of 3
Article
Publication date: 5 December 2016

Athanassios Mihailidis, George Savaidis, Emmanouil Bouras, Emmanouil Athanasopoulos, Nikolaos Ganavaras, Ioannis Topalidis, Dimitrios Karageorgos and Ilias Rampidis

Large-scale belt-conveyor systems are extensively used in open mines to continuously transport bulk material. Conveyor pulleys are critical components and failures have…

Abstract

Purpose

Large-scale belt-conveyor systems are extensively used in open mines to continuously transport bulk material. Conveyor pulleys are critical components and failures have significant financial consequences due to extended downtime. Aiming at increasing their durability, two critical spots are identified: the drum and the welds between end-plates and drum. Alternative designs have been evaluated. The paper aims to discuss these issues.

Design/methodology/approach

Loads on the driving drum are determined from measurements of the bearing force and the motor power. The friction interaction between belt and drum is described by the creep model and its impact is evaluated by comparing the results obtained for low and typical values of friction coefficient. Alternative designs are analysed using finite element method with optimised variable density mesh. The stress field and the deformations are calculated and evaluated.

Findings

Friction affects the torque transmission capacity and force distribution, but it is shown that in this case it has almost no impact on the maximum von Mises stress which occurs on the inside surface of the drum; therefore fatigue cracks initiated there, cannot be visually detected. A reinforcing diaphragm is added at the mid-plane to reduce the stress. A new, improved design is proposed to eliminate welds between the end-plates and the drum.

Research limitations/implications

The new proposed design has to be tested in the field to ultimately validate its higher durability.

Originality/value

The impact of the friction of the belt on the drum is demonstrated. The reinforcement resulting from a mid-plane diaphragm is quantitatively evaluated and assessed. A new improved pulley design is proposed aiming at significantly increased operational life compared to the one of the current design.

Details

International Journal of Structural Integrity, vol. 7 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 December 2016

Efstratios Giannakis and George Savaidis

The purpose of this paper is to focus on the finite element (FE) analyses undertaken for aerodynamically and structurally optimized design of a modern, lightweight civil unmanned…

Abstract

Purpose

The purpose of this paper is to focus on the finite element (FE) analyses undertaken for aerodynamically and structurally optimized design of a modern, lightweight civil unmanned air vehicle (UAV) made fully of composite materials.

Design/methodology/approach

The FE method has been applied to design and calculate the safety factors of all structural elements of the UAV. Fully parameterized design tools have been developed in the preliminary design phase, allowing automatic reshapes of the skin and the internal structural parts, wherever needed, to achieve optimal structural design, from the point of view of lightweight and structural integrity. Monotonic and fatigue tests have been performed on material specimens with various thicknesses and fibre textures, to verify the material properties used for the FE analyses. The load assumptions were in accordance with the valid international standards.

Findings

The material tests confirmed the validity of the material properties used within the FE calculations. The calculated safety factors were acceptable for all structural elements and components of the UAV. As a result, a lightweight, structurally optimized design has been achieved, considering the international, standardized specifications assumptions and fulfilling the safety requirements.

Practical implications

Design engineers may use the outcomes of this work as a guide to achieve optimal lightweight structures ensuring its operational strength using composite, lightweight materials.

Originality/value

A new, structurally optimized, lightweight aircraft design has been developed, able to accommodate heavy electronic payloads while being able to fly for over ten hours without refuelling. This medium altitude long endurance airplane can overview forests, seas and human trafficking autonomously and economically.

Details

International Journal of Structural Integrity, vol. 7 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 31 May 2019

George Bikakis, Nikolaos Tsigkros, Emilios Sideridis and Alexander Savaidis

The purpose of this paper is to investigate the ballistic impact response of square clamped fiber-metal laminates and monolithic plates consisting of different metal alloys using…

Abstract

Purpose

The purpose of this paper is to investigate the ballistic impact response of square clamped fiber-metal laminates and monolithic plates consisting of different metal alloys using the ANSYS LS-DYNA explicit nonlinear analysis software. The panels are subjected to central normal high velocity ballistic impact by a cylindrical projectile.

Design/methodology/approach

Using validated finite element models, the influence of the constituent metal alloy on the ballistic resistance of the fiber-metal laminates and the monolithic plates is studied. Six steel alloys are examined, namely, 304 stainless steel, 1010, 1080, 4340, A36 steel and DP 590 dual phase steel. A comparison with the response of GLAss REinforced plates is also implemented.

Findings

It is found that the ballistic limits of the panels can be substantially affected by the constituent alloy. The stainless steel based panels offer the highest ballistic resistance followed by the A36 steel based panels which in turn have higher ballistic resistance than the 2024-T3 aluminum based panels. The A36 steel based panels have higher ballistic limit than the 1010 steel based panels which in turn have higher ballistic limit than the 1080 steel based panels. The behavior of characteristic impact variables such as the impact load, the absorbed impact energy and the projectile’s displacement during the ballistic impact phenomenon is analyzed.

Originality/value

The ballistic resistance of the aforementioned steel fiber-metal laminates has not been studied previously. This study contributes to the scientific knowledge concerning the impact response of steel-based fiber-metal laminates and to the construction of impact resistant structures.

Details

International Journal of Structural Integrity, vol. 10 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 3 of 3