Mica Grujicic, Jennifer Snipes and S Ramaswami
The purpose of this paper is to propose a computational approach to establish the effect of various flow drilling screw (FS) process and material parameters on the quality and the…
Abstract
Purpose
The purpose of this paper is to propose a computational approach to establish the effect of various flow drilling screw (FS) process and material parameters on the quality and the mechanical performance of the resulting FS joints.
Design/methodology/approach
Toward that end, a sequence of three distinct computational analyses is developed. These analyses include: (a) finite-element modeling and simulations of the FS process; (b) determination of the mechanical properties of the resulting FS joints through the use of three-dimensional, continuum finite-element-based numerical simulations of various mechanical tests performed on the FS joints; and (c) determination, parameterization and validation of the constitutive relations for the simplified FS connectors, using the results obtained in (b) and the available experimental results. The availability of such connectors is mandatory in large-scale computational analyses of whole-vehicle crash or even in simulations of vehicle component manufacturing, e.g. car-body electro-coat paint-baking process. In such simulations, explicit three-dimensional representation of all FS joints is associated with a prohibitive computational cost.
Findings
Virtual testing of the shell components fastened using the joint connectors validated the ability of these line elements to realistically account for the strength, ductility and toughness of the three-dimensional FS joints.
Originality/value
The approach developed in the present work can be used, within an engineering-optimization procedure, to adjust the FS process and material parameters (design variables) in order to obtain a desired combination of the FS-joint mechanical properties (objective function).
Details
Keywords
Jongwon Lee, Inwook Hwang, Keehoon Kim, Seungmoon Choi, Wan Kyun Chung and Young Soo Kim
The purpose of this paper is to present a surgical robot for spinal fusion and its control framework that provides higher operation accuracy, greater flexibility of robot position…
Abstract
Purpose
The purpose of this paper is to present a surgical robot for spinal fusion and its control framework that provides higher operation accuracy, greater flexibility of robot position control, and improved ergonomics.
Design/methodology/approach
A human‐guided robot for the spinal fusion surgery has been developed with a dexterous end‐effector that is capable of high‐speed drilling for cortical layer gimleting and tele‐operated insertion of screws into the vertebrae. The end‐effector is position‐controlled by a five degrees‐of‐freedom robot body that has a kinematically closed structure to withstand strong reaction force occurring in the surgery. The robot also allows the surgeon to control cooperatively the position and orientation of the end‐effector in order to provide maximum flexibility in exploiting his or her expertise. Also incorporated for improved safety is a “drill‐by‐wire” mechanism wherein a screw is tele‐drilled by the surgeon in a mechanically decoupled master/slave system. Finally, a torque‐rendering algorithm that adds synthetic open‐loop high‐frequency components on feedback torque increases the realism of tele‐drilling in the screw‐by‐wire mechanism.
Findings
Experimental results indicated that this assistive robot for spinal fusion performs drilling tasks within the static regulation errors less than 0.1 μm for position control and less than 0.05° for orientation control. The users of the tele‐drilling reported subjectively that they experienced torque feedback similar to that of direct screw insertion.
Research limitations/implications
Although the robotic surgery system itself has been developed, integration with surgery planning and tracking systems is ongoing. Thus, the screw insertion accuracy of a whole surgery system with the assistive robot is to be investigated in the near future.
Originality/value
The paper arguably pioneers the dexterous end‐effector appropriately designed for spinal fusion, the cooperative robot position‐control algorithm, the screw‐by‐wire mechanism for indirect screw insertion, and the torque‐rendering algorithm for more realistic torque feedback. In particular, the system has the potential of circumventing the screw‐loosening problem, a common defect in the conventional surgeon‐operated or robot‐assisted spinal fusion surgery.
Details
Keywords
IN this issue there is a Letter to the Editor (page 42). Its author is D. A. Barron, Chief Work Study Engineer of Marconi's Wireless Telegraph Co. Ltd., at Basildon. The letter is…
Abstract
IN this issue there is a Letter to the Editor (page 42). Its author is D. A. Barron, Chief Work Study Engineer of Marconi's Wireless Telegraph Co. Ltd., at Basildon. The letter is important from two aspects. Firstly, because it enables the writer of this column to clear up any misconceptions lingering in people's minds regarding references to Charles Bedaux in past editorials appearing in this journal.
Peng Fan and Y.C. Kuang
The rotor in screw motor is driven to rotate by highly pressure difference of drilling fluid (DF), while rotor drives drill bit to break rocks. DF works in the volume cavity (VC…
Abstract
Purpose
The rotor in screw motor is driven to rotate by highly pressure difference of drilling fluid (DF), while rotor drives drill bit to break rocks. DF works in the volume cavity (VC) which exists between the stator and rotor (SAR), these process realizes the conversion from hydraulic energy to mechanical energy finally. In order to assure seal performance and output power reliability of VC in common hypocycloid screw motor (CHSM), it’s essential to survey SAR end-face profile.
Design/methodology/approach
In this article, based on the internal and external cycloid method given for SAR end-face of φ172 7/8-head LZ type CHSM, the interference among SAR is established based on the meshing model through theoretical equilibrium method (TEM). Last, the reasonable design value of SAR interference in TEM is verified with the hydraulic parameters test results.
Findings
The profile optimization that top-root part of rotor end-face profiles is replaced by elliptical-circular arcs (ECA) makes the transition area of tooth-top and tooth-root connect smoother than before. The reasonable interference of SAR in TEM is almost 0.16mm~0.22mm to ensure better sealing performance. Through the hydraulic test, the interference positive fluctuation or the number of SAR head reduces increase (starting-pressure-drop) SPD while negative fluctuations by contraries. Meanwhile, DF penetration also decreases the revolution speed with the SAR interference decreases. The less SAR head revolution speed is always below the more with the constant driving power and DF hydraulic drop. Ultimately, decreasing in overall-efficiency occurs for larger fluctuation of interference or or less interference among SAR.
Originality/value
The line type optimization and analysis in TEM for CHSM improves the motor seal and output performance, also has important application values simultaneously.
Details
Keywords
Dongmin Li, Yuanzhi Zhao, Shiming Zhu and Hengxuan Luan
This paper aims to propose a conceptual scale model of mobile drilling robot according to the actual drilling rig and working conditions to improve the safety and automation of…
Abstract
Purpose
This paper aims to propose a conceptual scale model of mobile drilling robot according to the actual drilling rig and working conditions to improve the safety and automation of drilling in tunnel construction and coal mining applications.
Design/methodology/approach
A couple of pinion and rack serves as the support mechanism driven by a motor with low rotation speed at high power, and these components are assembled in the center of the robot to tightly fasten the whole body together. The drilling rod and the sleeve are connected through a hole with screw thread so that the rod feeds and rotates simultaneously along with the sleeve. The robot model is automatically controlled by a single-chip microcomputer, and the anti-disturbance circuit is designed as well. A five-step rule obstacle avoidance method is proposed to ensure safe and reliable movement.
Findings
The results of simulation experiments on drilling operation do indicate that the mechanism and control method are feasible and effective.
Research limitations/implications
The robot is nearly complete but indeed remains only an experimental machine.
Originality/value
The design of the mechanism structure for the conceptual robot is novelty. The method of five-step rule obstacle avoidance can improve reliability of obstacle avoidance according to the experimental results, which can meet the requirements of complex working conditions underground coal mine.
Details
Keywords
INDUSTRIAL consultants are being increasingly employed both here and in the United States. It is natural that much of their work should fall within the field of work study since…
Abstract
INDUSTRIAL consultants are being increasingly employed both here and in the United States. It is natural that much of their work should fall within the field of work study since the usual reason for calling them in is to secure greater productivity. Such incursions are sometimes looked at askance by those assigned to that particular role in a company. This understandable human attitude will not be exorcised by implying that consultants are a race of infallible beings whose job is to impose superior methods on the permanent staff.
The NEW GOODYEAR PUMP now being produced by Goodyear Pumps Ltd., Cambourne, Cornwall, a subsidiary of Holman Bros. Ltd. claims a truly amazing performance. Invented by the…
Abstract
The NEW GOODYEAR PUMP now being produced by Goodyear Pumps Ltd., Cambourne, Cornwall, a subsidiary of Holman Bros. Ltd. claims a truly amazing performance. Invented by the Cornishman, James W. Goodyear, who has had over 20 years' experience of hydraulics, it makes use of a ‘continuous’ piston. The pump is a continuous, self‐priming, self‐lubricating one, of positive axial‐flow employing a screw rotor of entirely new form. The screw engages with a rotating plate to produce a pulseless action that is virtually positive. In fact, rotor and plate are the only moving parts and since the rotor spins on its true centres there is no tendency to roll around and rub against the surrounding rubber stator which can often be troublesome with this type of conventional pump, The rotor shaft is supported on roller bearings which are protected by lip seals. The rotor can turn in either direction so that direction of flow can be chosen at will. Mechanical face seals running on ground and lapped surfaces seal the shaft, and a chamber between seals and bearings is vented to atmosphere to prevent build‐up of fluid pressure.
Dongmin Li, Shiming Zhu, Shangfei Xia, Peisi Zhong, Jiaqi Fang and Peng Dai
During drilling in coal mines, sticking of drill rod (referred to as SDR in this work) is a potential threat to underground safety. However, no practical measures to deter SDR…
Abstract
Purpose
During drilling in coal mines, sticking of drill rod (referred to as SDR in this work) is a potential threat to underground safety. However, no practical measures to deter SDR have been developed yet. The purpose of this study is to develop an anti-SDR strategy using proportional-integral-derivative (PID) and compliance control (PIDC). The proposed strategy is compatible with the drilling process currently used in underground coal mines using drill rigs. Therefore, this study aims to contribute to the PIDC strategy for solving SDR.
Design/methodology/approach
A hydraulic circuit to reduce SDR was built based on a load-independent flow distribution system, a PID controller was designed to control the inlet hydraulic pressure of the rotation motor and a typical compliance control approach was adopted to control the feed force and displacement. Moreover, the weight and optimal combination of the alternative admittance control parameters for the feed cylinder were obtained by adopting the orthogonal experiment approach. Furthermore, a fuzzy admittance control approach was proposed to control the feed displacement. Experiments were conducted to test the effectiveness of the proposed method.
Findings
The experimental results indicated that the PIDC strategy was appropriate and effective for controlling the rotation motor and feed cylinder; thus, the proposed method significantly reduces the SDR during drilling operations in underground coal mines.
Research limitations/implications
As the PIDC strategy solves the SDR problem in underground coal mines, it greatly improves the safety of coal mine operation and decreases the power cost. Consequently, it brings the considerable benefits of coal mine production and vast application prospects in other corresponding fields. Actual drilling conditions are difficult to accurately simulate in a laboratory; thus, for future work, drilling experiments can be conducted in actual underground coal mines.
Originality/value
The PIDC-based anti-SDR strategy proposed in this study satisfactorily controls the rotation motor and feed cylinder and facilitates the feed and rotation movements. Furthermore, the tangible novelty of this study results is that it improves the frequency response of the entire drilling system. The drilling process with PIDC decreased the occurrence of SDR by 50%; therefore, the anti-SDR strategy can significantly improve the safety and efficiency of underground coal mining.
Details
Keywords
FIRST Langley and then Maxim in 1895 produced a steam plant designed for air‐craft, but no practical success attended these early efforts.