Ali Kadhim Sallal, Seyed Alireza Zareei, Haitham A.B. Al-Thairy and Niloofar Salemi
The purpose of this research is to study the effect of high temperature on concrete columns which are considered the most important part of the concrete structure. Glass fibres…
Abstract
Purpose
The purpose of this research is to study the effect of high temperature on concrete columns which are considered the most important part of the concrete structure. Glass fibres were used to study the effect of heat on them as well as on the properties of reinforcing steel and concrete.
Design/methodology/approach
High tensile stress may develop at the tension zone of the column section when the column is exposed to an axial compressive load with a relatively high eccentricity. Since fibre bars have a higher tensile strength than steel bars, they can be used in the tension zone of hybrid reinforced concrete columns to resist tensile stress, while steel bars can be used in the compression zone to resist compressive stress. However, as documented in prior research studies and advised by standards and codes, the mechanical qualities of concrete, steel and fibre bars are considerably damaged when hybrid columns are exposed to high temperatures.
Findings
When the fire temperature rises, the ultimate load value of the reinforced concrete column decreases. Also, steel bar reinforcing is more efficient than glass fibre bars in resisting high temperatures. The rate decrease in the strength of reinforced concrete columns to applied load on it decreases with the rise of the temperature to which the specimen was exposed during the burning period.
Originality/value
The experimental and numerical work includes a study of the effect of a fire furnace on the behaviour of hybrid R.C. columns. Three types of reinforcement were used steel bars only, G.F.R.P bars only and hybrid (steel and G.F.R.P) bars. These columns specimens were cast and divided into three groups according to the details of reinforcement, the effect of fire temperature and according to the eccentricity ratio. Two types of hybrid are used in this work. Fourteen R.C. columns were casted and divided into, 4 specimens not burn and 10 specimens burn at temperatures 300, 500 and 700.
Details
Keywords
Adam Gnatowski, Agnieszka Kijo-Kleczkowska, Rafał Gołębski and Kamil Mirek
The issues concerning the prediction of changes in properties of polymer materials as a result of adding reinforcing fibers are currently widely discussed in the field of polymer…
Abstract
Purpose
The issues concerning the prediction of changes in properties of polymer materials as a result of adding reinforcing fibers are currently widely discussed in the field of polymer material processing. This paper aims to present strengths and weaknesses of composites based on polymer materials strengthened with fibers. It touches upon composite cracking at the junction of a matrix and its reinforcement. It also discusses the analysis of changes in properties of chosen materials as a result of adding reinforcing fibers. The paper shows improvement in the strength of polymer materials with fiber addition, which is extremely important, because these types of composites are used in the aerospace, automotive and electrical engineering industries.
Design/methodology/approach
Comparing the properties of matrix strength with fiber properties is practically impossible. Thus, fiber tensile strength and composite tensile strength shall be compared (González et al., 2011): tensile (glass fiber GF) = 900 [MPa], elongation ΔL≈ 0; yield point (polyamide 66) = 70−90 [MPa], elongation Δ[%] = 3,5-18; tensile (polyamide 66 + 15% GF) = 80-125 [MPa], elongation Δ[%] ≈ 0; tensile (polyamide 66 + 30% GF) = 190 [MPa], elongation Δ[%] ≈ 0; yield point (polyamide 6) = 45-85 [MPa], elongation Δ[%] = 4-15; tensile (polyamide 6 + 15% GF) = 80-125 [MPa], elongation Δ[%] ≈ 0; tensile (polyamide 6 + 30% GF) = 95-130 [MPa] elongation Δ[%] ≈ 0. Comparison of properties of selected polymers and composites is presented in Tables 1−10 and Figures 1 and 2. The measurement methodology is presented in detail in the paper Kula et al. (2018). The increase in fiber content (to the extent discussed) leads to the increase in yield strength stresses and hardness. The value of yield strength for polyamide with the addition of fiberglass grows gradually with the increase in fiber content. The hardness of the composite of polyamide with glass balls increases together with the increase in reinforcement content. The changes of these values do not occur linearly. The increase in fiber content has a slight impact on density change (the increase of about 1 g/mm3 per 10 per cent).
Findings
The use of polymers as a matrix allows to give composites features such as: lightness, corrosion resistance, damping ability, good electrical insulation and thermal and easy shaping. Polymers used as a matrix perform the following functions in composites: give the desired shape to the products, allow transferring loads to fibers, shape thermal, chemical and flammable properties of composites and increase the possibilities of making composites. Fiber-reinforced polymer composites are the effect of searching for new construction materials. Glass fibers show tensile strength, stiffness and brittleness, while the polymer matrix has viscoelastic properties. Glass fibers have a uniform shape and dimensions. Fiber-reinforced composites are therefore used to increase strength and stiffness of materials. Polymers have low tensile strength, exhibit high deformability. Polymers reinforced by glass fiber have a high modulus of elasticity and therefore provide better the mechanical properties of the material. Composites with glass fibers do not exhibit deformations in front of cracking. An increase in the content of glass fiber in composites increases the tensile strength of the material. Polymers reinforced by glass fiber are currently one of the most important construction materials and are widely used in the aerospace, automotive and electro-technical industries.
Originality/value
The paper presents the test results for polyethylene composites with 25 per cent and 50 per cent filler coming from recycled car carpets of various car makes. The tests included using differential scanning calorimetry, testing material hardness, material tensile strength and their dynamic mechanical properties.
Details
Keywords
Ashish R. Prajapati, Harshit K. Dave and Harit K. Raval
The fiber reinforced polymer composites are becoming more critical because of their exceptional mechanical properties and lightweight structures. Fused filament fabrication (FFF…
Abstract
Purpose
The fiber reinforced polymer composites are becoming more critical because of their exceptional mechanical properties and lightweight structures. Fused filament fabrication (FFF) is a three-dimensional (3D) printing technique that can manufacture composite structures. However, the effect of impact performance on the structural integrity of FFF made composites compared to the pre-preg composites is a primary concern for the practical usage of 3D printed parts. Therefore, this paper aims to investigate the effect of different processing parameters on the impact performance of 3D printed composites.
Design/methodology/approach
This paper investigates the impact of build orientation, fiber stacking sequence and fiber angle on the impact properties. Two build orientations, three fiber stacking sequences and two different fiber angles have been selected for this study. Charpy impact testing is carried out to investigate the impact energy absorption of the parts. Onyx as a matrix material and two different types of fibers, that is, fiberglass and high strength high temperature (HSHT) fiberglass as reinforcements, are used for the fabrication.
Findings
Results indicate that build orientation and fiber angle largely affect the impact performance of composite parts. The composite part built with XYZ orientation, 0º/90º fiber angle and B type fiber stacking sequence resulted into maximum impact energy. However, comparing both types of fiber reinforcement, HSHT fiberglass resulted in higher impact energy than regular fiberglass.
Originality/value
This study evaluates the damage modes during the impact testing of the 3D printed composite parts. The impact energy absorbed by the composite samples during the impact testing is measured to compare the effect of different processing conditions. The investigation of different types of fiberglass reinforced with Onyx material is very limited for the FFF-based process. The results also provide a database to select the different parameters to obtain the required impact properties.
Details
Keywords
Isaac Ferreira, Margarida Machado, Fernando Alves and António Torres Marques
In industry, fused filament fabrication (FFF) offers flexibility and agility by promoting a reduction in costs and in the lead-time (i.e. time-to-market). Nevertheless, FFF parts…
Abstract
Purpose
In industry, fused filament fabrication (FFF) offers flexibility and agility by promoting a reduction in costs and in the lead-time (i.e. time-to-market). Nevertheless, FFF parts exhibit some limitations such as lack of accuracy and/or lower mechanical performance. As a result, some alternatives have been developed to overcome some of these restrictions, namely, the formulation of high performance polymers, the creation of fibre-reinforced materials by FFF process and/or the design of new FFF-based technologies for printing composite materials. This work aims to analyze these technologies.
Design/methodology/approach
This work aims to study and understand the advances in the behaviour of 3D printed parts with enhanced performance by its reinforcement with several shapes and types of fibres from nanoparticles to continuous fibre roving. Thus, a comprehensive survey of significant research studies carried out regarding FFF of fibre-reinforced thermoplastics is provided, giving emphasis to the most relevant and innovative developments or adaptations undergone at hardware level and/or on the production process of the feedstock.
Findings
It is shown that the different types of reinforcement present different challenges for the printing process with different outcomes in the part performance.
Originality/value
This review is focused on joining the most important researches dedicated to the process of FFF-printed parts with different types reinforcing materials. By dividing the reinforcements in categories by shape/geometry and method of processing, it is possible to better quantify performance improvements.
Details
Keywords
Alperen Dogru and M. Ozgur Seydibeyoglu
This study aims to understand the effect of the use of different proportions and types of fibers in the polyamide 6 (PA6) matrix during material extrusion-based additive…
Abstract
Purpose
This study aims to understand the effect of the use of different proportions and types of fibers in the polyamide 6 (PA6) matrix during material extrusion-based additive manufacturing (MEX) and the effect of the manufacturing parameters on the mechanical properties. The mechanical, thermal and morphological properties of PA composites that are reinforced with carbon fiber (CF), glass fiber (GF) and as well as hybrid fiber (HF) were investigated.
Design/methodology/approach
In this study, the effect of nozzle temperature and layer thickness on the mechanical properties of composite samples was investigated in terms of their behavior under tensile, impact and compression loads, manufacturing parameters as well as fiber ratio and type. The results were also consolidated by scanning electron microscopy.
Findings
At 20 Wt.% CF reinforcement PA6 samples, a tensile strength value of 125 MPa was obtained with a 60% increase in tensile strength value compared to neatPA6. The HF-reinforced ones also measured a tensile strength value of 106.69 MPa. This corresponds to an increase of 38% compared to neatPA6. The results also show that HF reinforcement can be an important component for many composites and a suitable material for use under compression loading.
Originality/value
PA6, an engineering polymer, can be produced by MEX, which offers several advantages for complex geometries and customized designs. There are studies on different carbon and GF ratios in the PA6 matrix. Using these fibers together in a HF, the examination of their mechanical properties in the MEX method and the examination of the effect of GF reinforcement in the hybrid structure, which has a cost-reducing effect, has been an innovative approach. In this study, the results of the optimization of the parameters affecting the mechanical properties in the production of samples reinforced with different ratios and types of fibers in the PA6 matrix by the MEX method are presented.
Details
Keywords
M. Balasubramanian, Thozhuvur Govindaraman Loganathan and R. Srimath
The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.
Abstract
Purpose
The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.
Design/methodology/approach
Fabrication methods and material characterization of various hybrid bio-composites are analyzed by studying the tensile, impact, flexural and hardness of the same. The natural fiber is a manufactured group of assembly of big or short bundles of fiber to produce one or more layers of flat sheets. The natural fiber-reinforced composite materials offer a wide range of properties that are suitable for many engineering-related fields like aerospace, automotive areas. The main characteristics of natural fiber composites are durability, low cost, low weight, high specific strength and equally good mechanical properties.
Findings
The tensile properties like tensile strength and tensile modulus of flax/hemp/sisal/Coir/Palmyra fiber-reinforced composites are majorly dependent on the chemical treatment and catalyst usage with fiber. The flexural properties of flax/hemp/sisal/coir/Palmyra are greatly dependent on fiber orientation and fiber length. Impact properties of flax/hemp/sisal/coir/Palmyra are depended on the fiber content, composition and orientation of various fibers.
Originality/value
This study is a review of various research work done on the natural fiber bio-composites exhibiting the factors to be considered for specific load conditions.
Details
Keywords
Kawaljit Singh Randhawa and Ashwin Patel
The mechanical and tribological properties of polymers and polymer composites vary with different environmental conditions. This paper aims to review the influence of…
Abstract
Purpose
The mechanical and tribological properties of polymers and polymer composites vary with different environmental conditions. This paper aims to review the influence of humidity/water conditions on various polymers and polymer composites' mechanical properties and tribological behaviors.
Design/methodology/approach
The influence of humidity and water absorption on mechanical and tribological properties of various polymers, fillers and composites has been discussed in this paper. Tensile strength, modulus, yield strength, impact strength, COF and wear rates of polymer composites are compared for different environmental conditions. The interaction between the water molecules and hydrophobic polymers is also represented.
Findings
Pure polymer matrices show somewhat mixed behavior in humid environments. Absorbed moisture generally plasticizes the epoxies and polyamides and lowers the tensile strength, yield strength and modulus. Wear rates of PVC generally decrease in humid environments, while for polyamides, it increases. Fillers like graphite and boron-based compounds exhibit low COF, while MoS2 particulate fillers exhibit higher COF at high humidity and water conditions. The mechanical properties of fiber-reinforced polymer composites tend to decrease as the rate of humidity increases while the wear rates of fiber-reinforced polymer composites show somewhat mixed behavior. Particulate fillers like metals and advanced ceramics reinforced polymer composites exhibit low COF and wear rates as the rate of humidity increases.
Originality/value
The mechanical and tribological properties of polymers and polymer composites vary with the humidity value present in the environment. In dry conditions, wear loss is determined by the hardness of the contacting surfaces, which may not effectively work for high humid environments. The tribological performance of composite constituents, i.e. matrix and fillers in humid environments, defines the overall performance of polymer composite in said environments.
Details
Keywords
Lai Jiang, Xiaobo Peng and Daniel Walczyk
This paper aims to summarize the up-to-date research performed on combinations of various biofibers and resin systems used in different three-dimensional (3D) printing…
Abstract
Purpose
This paper aims to summarize the up-to-date research performed on combinations of various biofibers and resin systems used in different three-dimensional (3D) printing technologies, including powder-based, material extrusion, solid-sheet and liquid-based systems. Detailed information about each process, including materials used and process design, are described, with the resultant products’ mechanical properties compared with those of 3D-printed parts produced from pure resin or different material combinations. In most processes introduced in this paper, biofibers are beneficial in improving the mechanical properties of 3D-printed parts and the biodegradability of the parts made using these green materials is also greatly improved. However, research on 3D printing of biofiber-reinforced composites is still far from complete, and there are still many further studies and research areas that could be explored in the future.
Design/methodology/approach
The paper starts with an overview of the current scenario of the composite manufacturing industry and then the problems of advanced composite materials are pointed out, followed by an introduction of biocomposites. The main body of the paper covers literature reviews of recently emerged 3D printing technologies that were applied to biofiber-reinforced composite materials. This part is classified into subsections based on the form of the starting materials used in the 3D printing process. A comprehensive conclusion is drawn at the end of the paper summarizing the findings by the authors.
Findings
Most of the biofiber-reinforced 3D-printed products exhibited improved mechanical properties than products printed using pure resin, indicating that biofibers are good replacements for synthetic ones. However, synthetic fibers are far from being completely replaced by biofibers due to several of their disadvantages including higher moisture absorbance, lower thermal stability and mechanical properties. Many studies are being performed to solve these problems, yet there are still some 3D printing technologies in which research concerning biofiber-reinforced composite parts is quite limited. This paper unveils potential research directions that would further develop 3D printing in a sustainable manner.
Originality/value
This paper is a summary of attempts to use biofibers as reinforcements together with different resin systems as the starting material for 3D printing processes, and most of the currently available 3D printing techniques are included herein. All of these attempts are solutions to some principal problems with current 3D printing processes such as the limit in the variety of materials and the poor mechanical performance of 3D printed parts. Various types of biofibers are involved in these studies. This paper unveils potential research directions that would further widen the use of biofibers in 3D printing in a sustainable manner.
Details
Keywords
Nastaran Mosleh, Soheil Dariushi and Masoud Esfandeh
In this paper, continuous glass tow preg-reinforced acrylonitrile butadiene styrene (ABS) composites were fabricated by using a 3D printing method, and the purpose of this study…
Abstract
Purpose
In this paper, continuous glass tow preg-reinforced acrylonitrile butadiene styrene (ABS) composites were fabricated by using a 3D printing method, and the purpose of this study is the investigation of the fiber preimpregnation effect on the mechanical behavior of these composites. In addition, a simple theoretical approach (mixture law), which considers the elastic behavior of reinforced composites and a numerical simulation method based on finite element method (FEM), was used to predict the tensile stress–strain behavior of ABS/glass tow preg composites in the elastic region.
Design/methodology/approach
Different groups of preimpregnated glass tows with various ABS amounts (named 2%, 10%, 20% and 30%) were prepared by the solution impregnation method. Then, preimpregnated glass tows (prepregs or tow-pregs) were fed into the printer head along with the polymeric ABS filament to print the composites. The tensile, flexural and short beam tests were conducted to evaluate the mechanical properties of the printed composites.
Findings
The first result of using tow-pregs instead of dry tows in continuous fiber 3D printing is much easier printing, printability improvement and the possibility of printing layers with low thickness, which can further increase the mechanical properties. The mechanical test results showed all of the glass prepregs improve strength and modulus in the tensile, three-point bending and short beam tests compared with neat ABS specimens, but statistical analysis showed that ABS weight percentage in the prepregs had no significant effect on the mechanical strength of composites except for the tensile modulus. Samples containing 2%-prepreg (minimum ABS amount in the tow-pregs) showed a significant improvement in tensile modulus. In the simulation section, good agreement is obtained between the model predictions and experimental tensile results. The results show that an acceptable deviation (14%) exists between the experimental and predicted value of elastic modulus by the numerical model.
Originality/value
To the best of the authors’ knowledge, this is the first study showing the effects of ABS weight percentage in prepregs on the mechanical properties of 3D printed continuous fiber-reinforced composites and predicting the mechanical behavior of 3D printed composites by numerical simulation method.
Details
Keywords
Yousef Al Rjoub, Ala Obaidat, Ahmed Ashteyat and Khalid Alshboul
This study aims to conduct an experimental study and finite element model (FEM) to investigate the flexural behavior of heat-damaged beams strengthened/repaired by hybrid fiber…
Abstract
Purpose
This study aims to conduct an experimental study and finite element model (FEM) to investigate the flexural behavior of heat-damaged beams strengthened/repaired by hybrid fiber-reinforced polymers (HFRP).
Design/methodology/approach
Two groups of beams of (150 × 250 × 1,200) mm were cast, strengthened and repaired using different configurations of HFRP and tested under four-point loadings. The first group was kept at room temperature, while the second group was exposed to a temperature of 400°C.
Findings
It was found that using multiple layers of carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GFRP) enhanced the strength more than a single layer. Also, the order of two layers of FRP showed no effect on flexural behavior of beams. Using a three-layer scheme (attaching the GFRP first and followed by two layers of CFRP) exhibited increase in ultimate load more than the scheme attached by CFRP first. Furthermore, the scheme HGC (heated beam repaired with glass and carbon, in sequence) allowed to achieve residual flexural capacity of specimen exposed to 400°C. Typical flexural failure was observed in control and heat-damaged beams, whereas the strengthened/repaired beams failed by cover separation and FRP debonding, however, specimen repaired with two layers of GFRP failed by FRP rupture. The FEM results showed good agreement with experimental results.
Originality/value
Few researchers have studied the effects of HFRP on strengthening and repair of heated, damaged reinforced concrete (RC) beams. This paper investigates, both experimentally and analytically, the performance of externally strengthened and repaired RC beams, in flexure, with different FRP configurations of CFRP and GFRP.