Wei V. Liu, Derek B. Apel and Vivek S. Bindiganavile
The trapped geothermal heat in the infinite rock mass through which mine tunnels are excavated is a great threat to the safety of personnel and mine operating equipment in deep…
Abstract
Purpose
The trapped geothermal heat in the infinite rock mass through which mine tunnels are excavated is a great threat to the safety of personnel and mine operating equipment in deep underground hot mines. In order to lessen the temperature inside the tunnel a considerable amount of energy is being spent by the way of using ventilation and cooling systems to dissipate the heat. However, operational costs of the system rise quite considerably, especially as the mines get deeper. Shotcrete is used both as a structural lining and as an effective insulation to reduce the heat load on the ventilation and cooling system within such tunnels. The paper aims to discuss these issues.
Design/methodology/approach
In order to analyse this problem of heat flow and thermal stresses and their time dependent pattern, several cylindrical models, in both analytical and numerical forms, are discussed and compared in this paper.
Findings
This study shows the validation of ABAQUS® software to predict the time dependent temperature and the thermal stresses in mine tunnels through the comparisons with the available analytical models. Further, thermal insulation effects of shotcrete are also evaluated with these theoretical models and it is found that all the models gave results in close agreements with one another.
Originality/value
Therefore, this study provides the theoretical proof for advantages in applying shotcrete as the thermal insulation layer in underground mines.
Details
Keywords
Ulrich Gabbert, Stefan Ringwelski, Mathias Würkner and Mario Kittsteiner
Pores and shrink holes are unavoidable defects in the die-casting mass production process which may significantly influence the strength, fatigue and fracture behaviour as well as…
Abstract
Purpose
Pores and shrink holes are unavoidable defects in the die-casting mass production process which may significantly influence the strength, fatigue and fracture behaviour as well as the life span of structures, especially if they are subjected to high static and dynamic loads. Such defects should be considered during the design process or after production, where the defects could be detected with the help of computed tomography (CT) measurements. However, this is usually not done in today's mass production environments. This paper deals with the stress analysis of die-cast structural parts with pores found from CT measurements or that are artificially placed within a structure.
Design/methodology/approach
In this paper the authors illustrate two general methodologies to take into account the porosity of die-cast components in the stress analysis. The detailed geometry of a die-cast part including all discontinuities such as pores and shrink holes can be included via STL data provided by CT measurements. The first approach is a combination of the finite element method (FEM) and the finite cell method (FCM), which extends the FEM if the real geometry cuts finite elements. The FCM is only applied in regions with pores. This procedure has the advantage that all simulations with different pore distributions, real or artificial, can be calculated without changing the base finite element mesh. The second approach includes the pore information as STL data into the original CAD model and creates a new adapted finite element mesh for the simulation. Both methods are compared and evaluated for an industrial problem.
Findings
The STL data of defects which the authors received from CT measurements could not be directly applied without repairing them. Therefore, for FEM applications an appropriate repair procedure is proposed. The first approach, which combines the FEM with the FCM, the authors have realized within the commercial software tool Abaqus. This combination performs well, which is demonstrated for test examples, and is also applied for a complex industrial project. The developed in-house code still has some limitations which restrict broader application in industry. The second pure FEM-based approach works well without limitations but requires increasing computational effort if many different pore distributions are to be investigated.
Originality/value
A new simulation approach which combines the FEM with the FCM has been developed and implemented into the commercial Abaqus FEM software. This approach the authors have applied to simulate a real engineering die-cast structure with pores. This approach could become a preferred way to consider pores in practical applications, where the porosity can be derived either from CT measurements or are artificially adopted for design purposes. The authors have also shown how pores can be considered in the standard FEM analysis as well.
Details
Keywords
Hongxing Jia, Shizhu Tian, Shuangjiang Li, Weiyi Wu and Xinjiang Cai
Hybrid simulation, which is a general technique for obtaining the seismic response of an entire structure, is an improvement of the traditional seismic test technique. In order to…
Abstract
Purpose
Hybrid simulation, which is a general technique for obtaining the seismic response of an entire structure, is an improvement of the traditional seismic test technique. In order to improve the analysis accuracy of the numerical substructure in hybrid simulation, the purpose of this paper is to propose an innovative hybrid simulation technique. The technique combines the multi-scale finite element (MFE) analysis method and hybrid simulation method with the objective of achieving the balance between the accuracy and efficiency for the numerical substructure simulation.
Design/methodology/approach
To achieve this goal, a hybrid simulation system is established based on the MTS servo control system to develop a hybrid analysis model using an MFE model. Moreover, in order to verify the efficiency of the technique, the hybrid simulation of a three-storey benchmark structure is conducted. In this simulation, a ductile column—represented by a half-scale scale specimen—is selected as the experimental element, meanwhile the rest of the frame is modelled as microscopic and macroscopic elements in the Abaqus software simultaneously. Finally, to demonstrate the stability and accuracy of the proposed technique, the seismic response of the target structure obtained via hybrid simulation using the MFE model is compared with that of the numerical simulation.
Findings
First, the use of the hybrid simulation with the MFE model yields results similar to those obtained by the fine finite element (FE) model using solid elements without adding excessive computing burden, thus advancing the application of the hybrid simulation in large complex structures. Moreover, the proposed hybrid simulation is found to be more versatile in structural seismic analysis than other techniques. Second, the hybrid simulation system developed in this paper can perform hybrid simulation with the MFE model as well as handle the integration and coupling of the experimental elements with the numerical substructure, which consists of the macro- and micro-level elements. Third, conducting the hybrid simulation by applying earthquake motion to simulate seismic structural behaviour is feasible by using Abaqus to model the numerical substructure and harmonise the boundary connections between three different scale elements.
Research limitations/implications
In terms of the implementation of the hybrid simulation with the MFE model, this work is helpful to advance the hybrid simulation method in the structural experiment field. Nevertheless, there is still a need to refine and enhance the current technique, especially when the hybrid simulation is used in real complex engineering structures, having numerous micro-level elements. A large number of these elements may render the relevant hybrid simulations unattainable because the time consumed in the numeral calculations can become excessive, making the testing of the loading system almost difficult to run smoothly.
Practical implications
The MFE model is implemented in hybrid simulation, enabling to overcome the problems related to the testing accuracy caused by the numerical substructure simplifications using only macro-level elements.
Originality/value
This paper is the first to recognise the advantage of the MFE analysis method in hybrid simulation and propose an innovative hybrid simulation technique, combining the MFE analysis method with hybrid simulation method to strike a delicate balance between the accuracy and efficiency of the numerical substructure simulation in hybrid simulation. With the help of the coordinated analysis of FEs at different scales, not only the accuracy and reliability of the overall seismic analysis of the structure is improved, but the computational cost can be restrained to ensure the efficiency of hybrid simulation.
Details
Keywords
Mina Kohansal Vajargah and Reza Ansari
The paper aims to presents a numerical analysis of free vibration of micromorphic structures subjected to various boundary conditions.
Abstract
Purpose
The paper aims to presents a numerical analysis of free vibration of micromorphic structures subjected to various boundary conditions.
Design/methodology/approach
To accomplish this objective, first, a two-dimensional (2D) micromorphic formulation is presented and the matrix representation of this formulation is given. Then, two size-dependent quadrilateral and triangular elements are developed within the commercial finite element software ABAQUS. User element subroutine (UEL) is used to implement the micromorphic elements. These non-classical elements are capable of capturing the micro-structure effects by considering the micro-motion of materials. The effects of the side length-to-length scale parameter ratio and boundary conditions on the vibration behavior of 2D micro-structures are discussed in detail. The reliability of the present finite element method (FEM) is confirmed by the convergence studies and the obtained results are validated with the results available in the literature. Also, the results of micromorphic theory (MMT) are compared with those of micropolar and classical elasticity theories.
Findings
The study found that the size effect becomes very significant when the side length of micro-structures is close to the length scale parameter.
Originality/value
The study is to analyze the free vibrations of 2D micro-structures based on MMT; to develop a 2D formulation for micromorphic continua within ABAQUS; to propose quadrilateral and triangular micromorphic elements using UEL and to investigate size effects on the vibrational behavior of micro-structures with various geometries.
Details
Keywords
Saranya Ilango and Sunil Mahato
Concrete in-filled stainless steel square tubular column combines both the benefits of concrete and steel material, providing enhanced ductility and high compressive strength to…
Abstract
Purpose
Concrete in-filled stainless steel square tubular column combines both the benefits of concrete and steel material, providing enhanced ductility and high compressive strength to the vertical structural members. Other advantages include high stiffness, better resistance to corrosion, increased pace of construction, enhanced bearing capacity, etc. The purpose of this paper is to understand the various behavioural aspects of concrete in-filled cold-formed duplex stainless steel (CI-CFDSS) square tubular column under axial compressive loads and to assess its structural performance.
Design/methodology/approach
In the current paper, the performance of CI-CFDSS square tubular column is numerically investigated under uniform static loading using finite element technique. The numerical study was based on an experimental investigation, which was carried out earlier, in order to study the effects of concrete strength and shape of stainless steel tube on the strength and behaviour of CI-CFDSS square tubular column. The experimental CI-CFDSS square tubular column has a length equal to 450 mm, breadth of 150 mm, width of 150 mm, thickness of 6 mm and a constant ratio of length to overall depth equal to 3. Numerical modelling of the experimental specimen was carried out using ABAQUS software by providing appropriate material properties. Non-linear finite element analysis was performed and the load vs axial deflection curve of the numerical CI-CFDSS square tubular column obtained was validated with the results of the experiment. In order to understand the behaviour of CI-CFDSS square tubular column under axial compressive loads, a parametric study was performed by varying the grade of concrete, type of stainless steel, thickness of stainless steel tube and shape of cross section. From the results, the performance of CI-CFDSS square tubular column was comparatively studied.
Findings
When the grade of concrete was increased the deformation capacity of the CI-CFDSS square tubular column reduced but showed better load carrying capacity. The steel tube made of duplex stainless steel exhibited enhanced performance in terms of load carrying capacity and axial deformation than the other forms, i.e. austenitic and ferritic stainless steel. The most suitable cross section for the CI-CFDSS square tubular column with respect to its performance is rectangular cross section and variation of the steel tube thickness led to the change of overall dimensions of the N-CI-CFDSS-SHS1C40 square tubular column showing marginal difference in performance.
Originality/value
The research work presented in this manuscript is authentic and could contribute to the understanding of the behavioural aspects of CI-CFDSS square tubular column under axial compressive loads.
Details
Keywords
Sara Mirzabagheri and Osama (Sam) Salem
Since columns are critical structural elements, they shall withstand hazards without any considerable damage. In the case of a fire, although concrete has low thermal conductivity…
Abstract
Purpose
Since columns are critical structural elements, they shall withstand hazards without any considerable damage. In the case of a fire, although concrete has low thermal conductivity compared to other construction materials, its properties are changed at elevated temperatures. Most critically, the residual compressive strengths of reinforced concrete columns are significantly reduced after fire exposure. Validation of the worthiness of rehabilitating concrete structures after fire exposure is highly dependent on accurately determining the residual strengths of fire-damaged essential structural elements such as columns.
Design/methodology/approach
In this study, eight reinforced-concrete columns (200 × 200 × 1,500 mm) that were experimentally examined in a prior related study have been numerically modelled using ABAQUS software to investigate their residual compressive strengths after exposure to different durations of standard fire (i.e. one and two hours) while subjected to different applied load ratios (i.e. 20 and 40% of the compressive resistance of the column). Outcomes of the numerical simulations were verified against the prior study's experimental results.
Findings
In a subsequent phase, the results of a parametric study that has been completed as part of the current study to investigate the effects of the applied load ratios show that the application of axial load up to 80% of the compressive resistance of the column did not considerably influence the residual compressive strength of the shorter columns (i.e. 1,500 and 2,000-mm high). However, increasing the height of the column to 2,500 or 3,000 mm considerably reduced the residual compressive strength when the load ratio applied on the columns exceeded 60 and 40%, respectively. Also, when the different columns were simulated under two-hour standard fire exposure, the dominant failure was buckling rather than concrete crushing which was the typical failure mode in most columns.
Originality/value
The outcomes of the numerical study presented in this paper reflect the residual compressive strength of RC columns subjected to various applied load ratios and standard fire durations. Also, the parametric study conducted as part of this research on the effects of higher load ratios and greater column heights on the residual compressive strength of the fire-damaged columns is practical and efficient. The developed computer models can be beneficial to assist engineers in assessing the validity of rehabilitating concrete structures after being exposed to fire.
Details
Keywords
Mohammad Zaman Kabir and Mehdi Parvizi
The purpose of this paper is to focus on the influences of residual stresses which were induced during roll-forming sections on lateral-torsional buckling of thin-walled…
Abstract
Purpose
The purpose of this paper is to focus on the influences of residual stresses which were induced during roll-forming sections on lateral-torsional buckling of thin-walled cold-formed steel channel and built-up I-sections beams. Built-up I section is made up of two back-to-back cold-formed channel beams. In this direction, at the primary stage, the roll-forming process of a channel section was simulated in ABAQUS environment and the accuracy of the result was verified with those existing experiments. Residual stresses and strains in both longitudinal and circumferential transverse directions were extracted and considered in the lateral-torsional buckling analysis under uniform end moments. The contribution of the current research is devoted to the numerical simulation of the rolling process in ABAQUS software enabling to restore the remaining stresses and strains for the buckling analysis in the identical software. The results showed that the residual stresses decrease considerably the lateral-torsional buckling strength as they have a major impact on short-span beams for channel sections and larger span for built-up I sections. The obtained moment capacity from the buckling analysis was compared to the predictions by American Iron and Steel Institute design code and it is found to be conservative.
Design/methodology/approach
This paper has explained a numerical study on the roll-forming process of a channel section and member moment capacities related to the lateral-torsional buckling of the rolled form channel and built-up I-sections beams under uniform bending about its major axis. It has also investigated the effects of residual stresses and strains on the behaviour of this buckling mode.
Findings
The residuals decrease the moment capacities of the channel beams and have major effect on shorter spans and also increase the local buckling strength of compression flange. But the residuals have major effect on larger spans for built-up I sections. It could be seen that the ratio of moment (with residuals and without residuals) for singly symmetric sections is more pronounced than doubly symmetric sections. So it is recommended to use doubly symmetric section of cold-formed section beams.
Originality/value
The incorporation of residual stresses and strains in the process of numerical simulation of rolled forming of cold-formed steel sections under end moments is the main contribution of the current work. The effect of residual stresses and strains on the lateral-torsional buckling is, for the first time, addressed in the paper.
Details
Keywords
Nagendra Kumar Maurya, Vikas Rastogi and Pushpendra Singh
Nowadays, the PolyJet technique is used to fabricate low volume functional parts in engineering and biomedical applications. However, the mechanical properties of the components…
Abstract
Purpose
Nowadays, the PolyJet technique is used to fabricate low volume functional parts in engineering and biomedical applications. However, the mechanical properties of the components fabricated through this process are inferior in comparison to components fabricated through the traditional manufacturing process. This paper aims to attempt to investigate the influence of process parameters, i.e. raster angle, orientation and type of surface finish on mechanical properties of RGD840 material manufactured by the PolyJet process.
Design/methodology/approach
Initially, this study focuses on experimental evaluation of elastic modulus, ultimate tensile strength and percentage elongation of the material. Further detailed experimental study of true stress, true strain, and plastic strain are conducted. Computational analysis of plastic strain is performed by using finite element analysis (FEA) software ABAQUS. The value of strength coefficient (K) and strain hardening coefficient (n) is calculated by using the graphical method from the true stress-plastic strain curve.
Findings
It is observed that 90º raster angle, flat orientation and glossy surface are the best level of process parameters for the tensile strength, true stress and modules of elasticity of the RGD840 material and the obtained value are 27.88, 30.134 and 2891.5 MPa, respectively. The percentage elongation is maximum at 60º raster angle, flat orientation, and matte finish type and the obtained value is 23.38%. The optimum level of process parameters are 90° raster angle, Flat orientation, with Glossy surface finish. SEM analysis of the fracture surface of the tensile test specimen proves that the fracture surface is brittle in nature.
Originality/value
The novelty of this work lies in the fact that no attempts were made to investigate the computational investigation of mechanical properties of RGD840 material.
Details
Keywords
Martyana Dwi Cahyati, Wei-Hsing Huang and Hsieh-Lung Hsu
This study aims to investigate the size effect of the patched repairing material applied to the cracked beam.
Abstract
Purpose
This study aims to investigate the size effect of the patched repairing material applied to the cracked beam.
Design/methodology/approach
Numerical analysis was conducted on a simply supported cracked beam with a dimension of 200 × 25 × 15 cm using ABAQUS software. The behavior of concrete and engineered cementitious composites (ECC) in the simulation are described as concrete damage plasticity model. Linear elastic-plastic model was used to represent the behavior of rebar steel. The type of patching consisted of the varying ratio of lengths and depths, including patching length to total length ratios of 0.2, 0.3 and 0.4, and patching depth to total depth ratios of 0.2, 0.3, 0.4 and 0.5.
Findings
Results show that variations in the patching length and depth ratios affect the maximum flexural load, stiffness and ductility of the repaired beam. It was also found that repairing the cracked beam by using ECC provides higher flexural load of the beam than the use of conventional concrete, owing to the superior tensile strength of ECC.
Originality/value
ECC is the cementitious-based mortar that contains the special selected poly vinyl alcohol fiber having high tensile strength. ECC has been known to exhibit high ductility, high tensile strength and improve durability performance. Thus, ECC is suitable as repairing material for patching cracked beam. By investigating the size of the patched repairing material applied to the cracked beam, the structural performance of repairing beam and the effectiveness of the various patching size were achieved.
Details
Keywords
Eslam Abd-El-Nabi, Arafa El-Helloty, Aymen Summra and Mahmoud Hassan Mahmoud
In this study, the effect of the column’s cross-section shape as a design parameter on resisting blast loads in reinforced concrete (RC) buildings was numerically investigated. To…
Abstract
Purpose
In this study, the effect of the column’s cross-section shape as a design parameter on resisting blast loads in reinforced concrete (RC) buildings was numerically investigated. To try to give a guideline to the design engineer about the best columns’ cross-section shape when designing an RC building that is more vulnerable to blast loads.
Design/methodology/approach
The finite element (FE) analysis was conducted for three RC buildings with different cross-section shapes of columns but with the same area and axial load capacity. The FE analysis was carried out using the Coupled Eulerian-Lagrangian (CEL) in Abaqus/CAE software. The effect of the blast loads resulting from the explosion of 50, 150, and 500 kg TNT bombs with a standoff distance of 3 m on all buildings was investigated.
Findings
The Findings showed that large TNT charges of more than 500 kg with a standoff distance of less than 3 m cause catastrophic damage to RC columns of any cross-section-shaped. Also, RC columns with circular cross-section shapes have the best resistance to blast loads, while RC columns with rectangular sections have the worst resistance.
Originality/value
The CEL technique was used to investigate the effect of columns’ cross-section shape on resisting blast loads on full-scale RC buildings. Also, this research gives a guideline to the design engineer about the best columns’ cross-section shape when designing an RC building that is more vulnerable to blast loads.