Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek
Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…
Abstract
Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.
Details
Keywords
Yongjian Wang, Xigang Yuan and Fei Wang
This paper aims to compare and analyze the effect of the dual-credit policy and product substitution rate on the automakers’ operational strategies under different production…
Abstract
Purpose
This paper aims to compare and analyze the effect of the dual-credit policy and product substitution rate on the automakers’ operational strategies under different production modes (e.g. centralized and independent), and further illustrate which production mode is more conducive to improving new energy vehicle (NEV) development.
Design/methodology/approach
The decision-making models for a centralized production mode where an integrated automaker produces both NEVs and fuel vehicles (FVs) and for independent production mode where an NEV automaker faces competition from a traditional FV automaker were formulated. The equilibrium solutions of each production mode were obtained by extreme value and game theory methods. The conclusions of the theoretical analysis were further verified with numerical analyses using IBM-MATLAB R2019a. Some management insights could be obtained by comparison analysis.
Findings
Under the dual-credit policy, an increase in the NEV credit trading price will always raise production quantity of NEVs, but only in an independent production mode where a higher trading price will also bring higher total profits to NEV automakers. In addition, only when the NEV credit trading price is high enough, a rising product substitution rate will be more favorable to NEV production and restrain FV production. Furthermore, an independent production mode is more favorable for the initial production of NEVs, but as each of the two vehicle types captures a certain amount of market share, a centralized production mode will be more conducive to the full replacement of FVs by NEVs.
Originality/value
The main contributions of this study include the formulation of decision-making models for FVs and NEVs in not only a centralized production mode but also an independent production mode. Moreover, this paper comprehensively analyzes how the dual-credit policy and product substitution relationship affect automakers’ production and pricing decisions. Then, the specific conditions under which each production mode is more conducive to NEV production and sales are summarized. The results proposed in this study provide scientific managerial insights for automakers and policy makers.
Details
Keywords
Wang Li, Xiuhua Gao, Xincheng Chen, Hongyan Wang, Changyou Zhu, Tong Li, Jun Wang, Hongyan Wu, Linxiu Du and Cairu Gao
This study aims to investigate the effect of different microstructures and its grain boundary character distribution (GBCD) on the corrosion behavior of weathering bridge steel.
Abstract
Purpose
This study aims to investigate the effect of different microstructures and its grain boundary character distribution (GBCD) on the corrosion behavior of weathering bridge steel.
Design/methodology/approach
The rust layer characteristics and corrosion resistance of specimens with different microstructures in the simulated industrial environment were studied by Electron Probe X-ray Micro-Analyzer, wavelength-dispersive spectrometer and electrochemical techniques. Electron backscatter diffraction technique was used to characterize the GBCD in steels with different microstructures.
Findings
Results revealed a significant difference in the corrosion susceptibility among the four microstructures, with corrosion rates decreasing in the following order: ferrite + pearlite > ferrite + bainite > bainite > martensite. The variation in corrosion resistance is primarily influenced by the microstructure type and the proportion of special grain boundaries, rather than the alloying elements. The proportion of Σ3 boundaries within the coincidence site lattice boundaries is positively correlated with improved corrosion resistance. A higher Σ3 boundary fraction resulted in a lower effective grain boundary energy, elevated self-corrosion potential, increased polarization resistance and reduced areas of localized galvanic corrosion; this led to enhanced inhibition of the electrochemical corrosion reaction, consequently reducing the corrosion rate.
Originality/value
This study elucidates and quantifies the intrinsic relationship between microstructure, GBCD and corrosion rate. This understanding is crucial for enhancing the corrosion resistance of weathering bridge steels in industrial atmospheric corrosion environments.
Details
Keywords
Yan Xia, Yi Wan, Hongwei Wang and Zhanqiang Liu
As the transmission component of a locomotive, the traction gear pair system has a direct effect on the stability and reliability of the whole machine. This paper aims to provide…
Abstract
Purpose
As the transmission component of a locomotive, the traction gear pair system has a direct effect on the stability and reliability of the whole machine. This paper aims to provide a detailed dynamic analysis for the traction system under internal and external excitations by numerical simulation.
Design/methodology/approach
A non-linear dynamic model of locomotive traction gear pair system is proposed, where the comprehensive time-varying meshing stiffness is obtained through the Ishikawa formula method and verified by the energy method, and then the sliding friction excitation is analyzed based on the location of the contact line. Meantime, the adhesion torque is constructed as a function of the adhesion-slip feature between wheelset and rail. Through Runge–Kutta numerical method, the system responses are studied with varying bifurcation parameters consisting of exciting frequency, load fluctuation, gear backlash, error fluctuation and friction coefficient. The dynamic behaviors of the system are analyzed and discussed from bifurcation diagram, time history, spectrum plot, phase portrait, Poincaré map and three-dimensional frequency spectrum.
Findings
The analysis results reveal that as control parameters vary the system experiences complex transition among a diverse range of motion states such as one-periodic, multi-periodic and chaotic motions. Specifically, the significant difference in system bifurcation characteristics can be observed under different adhesion conditions. The suitable gear backlash and error fluctuation can avoid the chaotic motion, and thus, reduce the vibration amplitude of the system. Similarly, the increasing friction coefficient can also suppress the unstable state and improve the stability of the system.
Originality/value
The numerical results may provide a systemic understanding of dynamic characteristics and present some available information to design and optimize the transmission performance of the locomotive traction system.
Details
Keywords
Shuai Yue, Ben Niu, Huanqing Wang, Liang Zhang and Adil M. Ahmad
This paper aims to study the issues of adaptive fuzzy control for a category of switched under-actuated systems with input nonlinearities and external disturbances.
Abstract
Purpose
This paper aims to study the issues of adaptive fuzzy control for a category of switched under-actuated systems with input nonlinearities and external disturbances.
Design/methodology/approach
A control scheme based on sliding mode surface with a hierarchical structure is introduced to enhance the responsiveness and robustness of the studied systems. An equivalent control and switching control rules are co-designed in a hierarchical sliding mode control (HSMC) framework to ensure that the system state reaches a given sliding surface and remains sliding on the surface, finally stabilizing at the equilibrium point. Besides, the input nonlinearities consist of non-symmetric saturation and dead-zone, which are estimated by an unknown bounded function and a known affine function.
Findings
Based on fuzzy logic systems and the hierarchical sliding mode control method, an adaptive fuzzy control method for uncertain switched under-actuated systems is put forward.
Originality/value
The “cause and effect” problems often existing in conventional backstepping designs can be prevented. Furthermore, the presented adaptive laws can eliminate the influence of external disturbances and approximation errors. Besides, in contrast to arbitrary switching strategies, the authors consider a switching rule with average dwell time, which resolves control problems that cannot be resolved with arbitrary switching signals and reduces conservatism.
Details
Keywords
Lunyan Wang, Qing Xia, Huimin Li and Yongchao Cao
The fuzziness and complexity of evaluation information are common phenomenon in practical decision-making problem, interval neutrosophic sets (INSs) is a power tool to deal with…
Abstract
Purpose
The fuzziness and complexity of evaluation information are common phenomenon in practical decision-making problem, interval neutrosophic sets (INSs) is a power tool to deal with ambiguous information. Similarity measure plays an important role in judging the degree between ideal and each alternative in decision-making process, the purpose of this paper is to establish a multi-criteria decision-making method based on similarity measure under INSs.
Design/methodology/approach
Based on an extension of existing cosine similarity, this paper first introduces an improved cosine similarity measure between interval neutosophic numbers, which considers the degrees of the truth membership, the indeterminacy membership and the falsity membership of the evaluation values. And then a multi-criteria decision-making method is established based on the improved cosine similarity measure, in which the ordered weighted averaging (OWA) is adopted to aggregate the neutrosophic information related to each alternative. Finally, an example on supplier selection is given to illustrate the feasibility and practicality of the presented decision-making method.
Findings
In the whole process of research and practice, it was realized that the application field of the proposed similarity measure theory still should be expanded, and the development of interval number theory is one of further research direction.
Originality/value
The main contributions of this paper are as follows: this study presents an improved cosine similarity measure under INSs, in which the weights of the three independent components of an interval number are taken into account; OWA are adopted to aggregate the neutrosophic information related to each alternative; and a multi-criteria decision-making method using the proposed similarity is developed under INSs.
Details
Keywords
Debiao Meng, Shiyuan Yang, Chao He, Hongtao Wang, Zhiyuan Lv, Yipeng Guo and Peng Nie
As an advanced calculation methodology, reliability-based multidisciplinary design optimization (RBMDO) has been widely acknowledged for the design problems of modern complex…
Abstract
Purpose
As an advanced calculation methodology, reliability-based multidisciplinary design optimization (RBMDO) has been widely acknowledged for the design problems of modern complex engineering systems, not only because of the accurate evaluation of the impact of uncertain factors but also the relatively good balance between economy and safety of performance. However, with the increasing complexity of engineering technology, the proposed RBMDO method gradually cannot effectively solve the higher nonlinear coupled multidisciplinary uncertainty design optimization problems, which limits the engineering application of RBMDO. Many valuable works have been done in the RBMDO field in recent decades to tackle the above challenges. This study is to review these studies systematically, highlight the research opportunities and challenges, and attempt to guide future research efforts.
Design/methodology/approach
This study presents a comprehensive review of the RBMDO theory, mainly including the reliability analysis methods of different uncertainties and the decoupling strategies of RBMDO.
Findings
First, the multidisciplinary design optimization (MDO) preliminaries are given. The basic MDO concepts and the corresponding mathematical formulas are illustrated. Then, the procedures of three RBMDO methods with different reliability analysis strategies are introduced in detail. These RBMDO methods were proposed for the design optimization problems under different uncertainty types. Furtherly, an optimization problem for a certain operating condition of a turbine runner blade is introduced to illustrate the engineering application of the above method. Finally, three aspects of future challenges for RBMDO, namely, time-varying uncertainty analysis; high-precision surrogate models, and verification, validation and accreditation (VVA) for the model, are discussed followed by the conclusion.
Originality/value
The scope of this study is to introduce the RBMDO theory systematically. Three commonly used RBMDO-SORA methods are reviewed comprehensively, including the methods' general procedures and mathematical models.
Details
Keywords
Liang Li, Ziyu Chen, Yaobing Wang, Xiaodong Zhang and Ningfei Wang
The purpose of this paper is to solve the tracking problem for free-floating space manipulators (FFSMs) in task space with parameter uncertainties and external disturbance.
Abstract
Purpose
The purpose of this paper is to solve the tracking problem for free-floating space manipulators (FFSMs) in task space with parameter uncertainties and external disturbance.
Design/methodology/approach
In this paper, the novel cerebellar model articulation controller (CMAC) is designed with the feedback controller. More precisely, the parameter uncertainties in the FFSM are considered for achieving the robustness.
Findings
By using the dynamically equivalent model, the CMAC can be designed and trained with the desired performance, such that the prescribed trajectory can be followed accordingly. The simulation results are presented for illustrating the validity of the derived results.
Originality/value
Based on the designed CMAC, the tracking error would be approaching zero by choosing appropriate quantization level in CMAC and the corresponding learning rules can be tuned online.
Details
Keywords
Bingjun Li, Shuhua Zhang, Wenyan Li and Yifan Zhang
Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the…
Abstract
Purpose
Grey modeling technique is an important element of grey system theory, and academic articles applied to agricultural science research have been published since 1985, proving the broad applicability and effectiveness of the technique from different aspects and providing a new means to solve agricultural science problems. The analysis of the connotation and trend of the application of grey modeling technique in agricultural science research contributes to the enrichment of grey technique and the development of agricultural science in multiple dimensions.
Design/methodology/approach
Based on the relevant literature selected from China National Knowledge Infrastructure, the Web of Science, SpiScholar and other databases in the past 37 years (1985–2021), this paper firstly applied the bibliometric method to quantitatively visualize and systematically analyze the trend of publication, productive author, productive institution, and highly cited literature. Then, the literature is combed by the application of different grey modeling techniques in agricultural science research, and the literature research progress is systematically analyzed.
Findings
The results show that grey model technology has broad prospects in the field of agricultural science research. Agricultural universities and research institutes are the main research forces in the application of grey model technology in agricultural science research, and have certain inheritance. The application of grey model technology in agricultural science research has wide applicability and precise practicability.
Originality/value
By analyzing and summarizing the application trend of grey model technology in agricultural science research, the research hotspot, research frontier and valuable research directions of grey model technology in agricultural science research can be more clearly grasped.
Details
Keywords
There is significant amount of literature tackling different issues related to the port industry. The present chapter focuses on a single business unit of seaports aiming at the…
Abstract
There is significant amount of literature tackling different issues related to the port industry. The present chapter focuses on a single business unit of seaports aiming at the documentation of works related to container terminals.
An effort to review, collect and present the majority of the works present in the last 30 years, between 1980 and 2010, has been made in order to picture the problems dealt and methods used by the authors in the specific research field. To facilitate the reader, studies have been grouped under five categories of addressed problems (productivity and competitiveness, yard and equipment utilization, equipment scheduling, berth planning, loading/unloading) and four modelling methodologies (mathematics and operations research, management and economics, simulation, stochastic modelling).
The analysis shows that most works focus on productivity and competitiveness issues followed by yard and equipment utilisation and equipment scheduling. In reference to the methodologies used managerial and economic approaches lead, followed by mathematics and operations research.
In reference to future research, two fields have been identified where there is scope of significant contribution by the academic community: container terminal security and container terminal supply chain integration.
The present chapter provides the framework for researchers in the field of port container terminals to picture the so far works in this research area and enables the identification of gaps at both research question and methodology level for further research.