Emrehan Gürsoy, Hayati Kadir Pazarlioğlu, Mehmet Gürdal, Engin Gedik, Kamil Arslan and Abdullah Dağdeviren
The purpose of this study is to analyse the magnetic field effect on Fe3O4/H2O Ferrofluid flowing in a sudden expansion tube, which has specific behaviour in terms of rheology…
Abstract
Purpose
The purpose of this study is to analyse the magnetic field effect on Fe3O4/H2O Ferrofluid flowing in a sudden expansion tube, which has specific behaviour in terms of rheology, with convex dimple fins. Because the investigation of flow separation is a prominent application in performance, the effect of magnetic field and convex dimple on the thermo-hydraulic performance of sudden expansion tube are examined, in detail.
Design/methodology/approach
During the solution of the boundary conditions of the sudden expansion tube, finite volume method was used. Analyses have been conducted considering the single-phase solution, steady-state, incompressible fluid and no-slip condition of the wall under forced convection conditions. In the analyses, it has been assumed that the flow was developing thermally and has been fully developed hydrodynamically.
Findings
The present study focuses on exploring the influence of the magnetic field, nanofluid concentration and convex dimple fins on the thermo-hydraulic performance of sudden expansion tube. The results indicate that the strength of the magnetic field, nanofluid concentration and convex dimple fins have a positive effect on the convective heat transfer in the system.
Originality/value
The authors conducted numerical studies, determining through a literature search that no one had yet investigated enhancing heat transfer on a sudden expansion tube using combinations of magnetic fields, nanofluids and convex dimple fins. The results of the numerical analyses provide valuable information about the improvement of heat transfer and system performance in electronic device cooling and heat exchangers.
Details
Keywords
Gülbanu Şenay, Metin Kaya, Engin Gedik and Muhammet Kayfeci
The purpose of this study is to numerically investigate the heat transfer enhancement by using two different nanofluids flow throughout the square duct under a constant heat flux…
Abstract
Purpose
The purpose of this study is to numerically investigate the heat transfer enhancement by using two different nanofluids flow throughout the square duct under a constant heat flux (500 × 103 W/m2).
Design/methodology/approach
In numerical computations, ANSYS Fluent code based on the finite volume method was used to solve governing equations by iteratively. Water, Al2O3-water and TiO2-water nanofluids were used for different flow velocities changing 1 m/s to 8 m/s (i.e. Reynolds number varying from 3,000 to 100,000).
Findings
The results were compared with results published previously in the literature and close agreement was observed especially considering Dittus and Boelter correlation for water. It was found that from the obtained results, increasing flow velocity and volume fractions of nanoparticles has caused to increase Nu number for all cases. Besides, variations of pressure drop, Darcy friction factor are presented graphically and discussed in detail. The results are consistent with a deviation of 1.3 to 15 per cent with the results of other researchers.
Originality/value
The effects of the Re numbers and volume fractions of nanoparticles (0.01 ≤ Φ ≤ 0.04) on the heat transfer and fluid flow characteristics such as average Nu number, pressure drop (ΔP) and Darcy friction factor (f) were investigated.
Details
Keywords
Sha Zhang, Zhengqi Gu, Wenguang Wu, Ledian Zheng, Jun Liu and Shanbin Yin
The purpose of this paper is to develop a numerical model used for calculating the nonlinearities of large-scale hydro-pneumatic suspension (HPS) and investigating the effects of…
Abstract
Purpose
The purpose of this paper is to develop a numerical model used for calculating the nonlinearities of large-scale hydro-pneumatic suspension (HPS) and investigating the effects of variations in flow path and operational parameter on suspension damping response.
Design/methodology/approach
To parameterization nonlinearities of the suspension, the author developed a two-phase flow model of a large-scale HPS based on computational fluid dynamics and volume of fluid method. Considerable effort was made to verify the nonlinearities by field measurements carried out on an off-highway mining dump truck. The investigation of effects of variations in flow path and operational parameter on damping characteristics highlights the necessity of the numerical simulation.
Findings
The two-phase flow model can represent the gas-oil interaction and simulate the suspension operational movement conveniently. Transient numerical simulation results can be used to model the nonlinearities of large-scale HPS accurately. A new phenomenon was discovered that the pressure in rebound chamber presents reduction trend during compression stroke in special cases. It has never been reported before.
Originality/value
Developed a two-phase flow model of a large-scale HPS, which can manage the gas-oil interaction and capture the complex flow field structure in it. The paper is the first study to model the nonlinearities of a large-scale HPS used in off-highway mining dump truck through transient numerical simulation. Compared with previous researches, such a research not only gives new insight and thorough understanding into the suspension internal fluid structure but also can give good guiding opinions to the optimal design of HPS.