Huijun Gan, Dongsheng Yu, Dongkun Li and He Cheng
The purpose of this paper is to construct a flux-controlled memcapacitor (MC) emulator without grounded restriction with the binary operation ability. The active first-order…
Abstract
Purpose
The purpose of this paper is to construct a flux-controlled memcapacitor (MC) emulator without grounded restriction with the binary operation ability. The active first-order low-pass filter (LPF) and high-pass filter (HPF) circuits are constructed by replacing the capacitor with MC.
Design/methodology/approach
The output saturation of the active device is innovatively adopted to realize the binary operation of MC with two memcapacitance values. By applying the direct current control voltage together with the input signal, the memcapacitance can be controlled, and hence, cut-off frequency of the filters can be adjusted without changing the circuit structure.
Findings
Experiments and simulation results show that the new filter has good frequency selectivity. Both LPF and HPF can change the cut-off frequency by changing the positive and negative control voltage. The experimental and simulation results are in good agreement with the theoretical analysis, which proves the feasibility and validity of the emulator and the filters.
Originality/value
These MC emulators are simple and easy to physically fabricate, which have been increasingly used for experiment. It also provide an effective reference for device miniaturization and low power consumption.
Details
Keywords
Chiemeka Loveth Maxwell, Dongsheng Yu and Yang Leng
The purpose of this paper is to design and construct an amplitude shift keying (ASK) modulator, which, using the digital binary modulating signal, controls a floating memristor…
Abstract
Purpose
The purpose of this paper is to design and construct an amplitude shift keying (ASK) modulator, which, using the digital binary modulating signal, controls a floating memristor emulator (MR) internally without the need for additional control circuits to achieve the ASK modulated wave.
Design/methodology/approach
A binary digital unipolar signal to be modulated is converted by a pre-processor circuit into a suitable bipolar modulating direct current (DC) signal for the control of the MR state, using current conveyors the carrier signal’s amplitude is varied with the change in the memristance of the floating MR. A high pass filter is then used to remove the DC control signal (modulating signal) leaving only the modulated carrier signal.
Findings
The results from the experiment and simulation are in agreement showed that the MR can be switched between two states and that a change in the carrier signals amplitude can be achieved by using an MR. Thus, showing that the circuit behavior is in line with the proposed theory and validating the said theory.
Originality/value
In this paper, the binary signal to be modulated is modified into a suitable control signal for the MR, thus the MR relies on the internal operation of the modulator circuit for the control of its memristance. An ASK modulation can then be achieved using a floating memristor without the need for additional circuits or signals to control its memristance.
Details
Keywords
Dongsheng Wang, Xiaohan Sun, Yingchang Jiang, Xueting Chang and Xin Yonglei
Stainless-clad bimetallic steels (SCBS) are widely investigated in some extremely environmental applications areas, such as polar sailing area and tropical oil and gas platforms…
Abstract
Purpose
Stainless-clad bimetallic steels (SCBS) are widely investigated in some extremely environmental applications areas, such as polar sailing area and tropical oil and gas platforms areas, because of their excellent anticorrosion performance and relatively lower production costs. However, the properties of SCBS, including the mechanical strength, weldability and the anticorrosion behavior, have a direct relation with the manufacturing process and can affect their practical applications. This paper aims to review the application and the properties requirements of SCBS in marine environments to promote the application of this new material in more fields.
Design/methodology/approach
In this paper, the manufacturing process, welding and corrosion-resistant properties of SCBS were introduced systematically by reviewing the related literatures, and some results of the authors’ research group were also introduced briefly.
Findings
Different preparation methods, such as rolling composite, casting rolling composite, explosive composite, laser cladding and plasma arc cladding, as well as the process parameters, including the vacuum degree, rolling temperature, rolling reduction ratio, volume ratios of liquid to solid, explosive ratio and the heat treatment, influenced a lot on the properties of the SCBS through changing the interface microstructures. Otherwise, the variations in rolling temperature, pass, reduction and the grain size of clad steel also brought the dissimilarities of the mechanical properties, microhardness, bonding strength and toughness. Another two new processes, clad teeming method and interlayer explosive welding, deserve more attention because of their excellent microstructure control ability. The superior corrosion resistance of SCBS can alleviate the corrosion problem in the marine environment and prolong the service life of the equipment, but the phenomenon of galvanic corrosion should be noted as much as possible. The high dilution rate, welding process specifications and heat treatment can weaken the intergranular corrosion resistance in the weld area.
Originality/value
This paper summarizes the application of SCBS in marine environments and provides an overview and reference for the research of stainless-clad bimetallic steel.
Details
Keywords
Yirong Gao, Xiaolin Wang and Dongsheng Li
This study aims to explore the relationship between the degree of state-owned enterprises’ (SOEs) mixed reform and the environmental response of enterprises, against the…
Abstract
Purpose
This study aims to explore the relationship between the degree of state-owned enterprises’ (SOEs) mixed reform and the environmental response of enterprises, against the background of actively promoting the reform of mixed ownership in China.
Design/methodology/approach
The study is conducted on a sample of A-share listed manufacturing companies in Shanghai and Shenzhen of China, investigated for the period 2015 to 2020. The baseline regression results are robust to a series of robustness and endogeneity tests. To deal with the issue of endogeneity, the technique of instrumental variable method has been applied.
Findings
The study confirms the U-shaped effect of the depth and restriction of mixed ownership on SOEs’ environmentally responsive behaviour in the manufacturing industry, especially for lower environmental regulation and higher level of risk-taking firms. The findings indicate that the government, shareholders and other stakeholders of enterprises should not simply consider that the mixed reform is directly promoting or reducing the environmental response behaviour of enterprises.
Practical implications
SOEs should improve their shareholding structures to undermine performance enhancement at the expense of the environment and increase environmentally beneficial behaviours. Regulators and governments should improve the institutional mechanism of environmental regulation and make efforts to promote corporate awareness of the environment.
Social implications
Although the adoption and implementation of environmentally friendly policies are costly, improved environmental response and other social responsibilities are helpful to corporate long-term growth and reputation and obtain more capital market attention. Therefore, firms would benefit from improving their environmental response to protect nature, as well as to enjoy the economic and social benefits of a better environmental response.
Originality/value
To the best of the authors’ knowledge, there is a lack of studies focussing on the environmental behaviour of SOEs of mixed reform. As the mixed reform in China has come to a climax phase in recent several years, SOEs of mixed reform is an ideal environment for research. The study focusses on manufacturing firms as these firms are more susceptible to contribute to environmental pollution, exploitation of natural resources and labour concerns.
Details
Keywords
Elisa Arrigo and Alessandro Brun
Despite menswear is gaining a significant relevance in terms of retail sales, it represents a neglected topic within the academic literature. Therefore, this paper aims at…
Abstract
Purpose
Despite menswear is gaining a significant relevance in terms of retail sales, it represents a neglected topic within the academic literature. Therefore, this paper aims at providing a better understanding of the formal menswear market by developing a tailor-made classification model for the identification of retailers' clusters and at discovering the critical success factors (CSFs).
Design/methodology/approach
This research looked at most formal high-end menswear retailers in Italy adopting a methodology based on the Analytic Hierarchy Process and multiple case studies. Thirty interviews were conducted with experts, managers and shopkeepers from case studies.
Findings
The study develops for the first time a classification framework of formal high-end menswear retailers and a matching matrix to jointly analyse retailers' clusters and customer profiles in Italy. The results identify the CSFs pursued by menswear retailers and highlight the existence of four clusters of retailers (Differentiated Fashion Firms; Formal Menswear Leaders; Tailoring Firms and Luxury Brands) and seven customer profiles (Habitual Professionals, Special Events, Young People, Occasional Professionals, Foreigners, VIPs and Fashionistas).
Originality/value
The formal high-end menswear represents one of the most traditional Italian heritage markets while being almost ignored in the academic literature. Thus, the value of this research lays in deepening our understanding of this market from the retailers' perspective, by providing for the first time a taxonomy of its players and contributing to identifying the CSFs and the main customer profiles.
Details
Keywords
Pu Wang, Shuguo Wang, Jing Ge, Daolin Si and Dongsheng Yang
It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process. The wear will cause the change of railhead…
Abstract
Purpose
It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process. The wear will cause the change of railhead profile and the relative positions of the switch rail and the stock rail, which will directly affect the wheel–rail contact state and wheel load transition when a train passes the turnout and will further impose serious impacts on the safety and stability of train operation. The purpose of this paper is to provide suggestions for wear management of high-speed turnout.
Design/methodology/approach
The actual wear characteristics of switch rails of high-speed turnouts in different guiding directions were studied based on the monitoring results on site; the authorized wear limits for the switch rails of high-speed turnout were studied through derailment risk analysis and switch rail strength analysis.
Findings
The results show that: the major factor for the service life of a curved switch rail is the lateral wear. The wear characteristics of the curved switch rail of a facing turnout are significantly different from those of a trailing turnout. To be specific, the lateral wear of the curved switch rail mainly occurs in the narrower section at its front end for a trailing turnout, but in the wider section at its rear end when for a facing turnout. The maximum lateral wear of a dismounted switch rail from a trailing turnout is found on the 15-mm wide section and is 3.9 mm, which does not reach the specified limit of 6 mm. For comparison, the lateral wear of a dismounted switch rail from a facing turnout is found from the 35-mm wide section to the full-width section and is greater than 7.5 mm, which exceeds the specified limit. Based on this, in addition to meeting the requirements of maintenance rules, the allowed wear of switch rails of high-speed turnout shall be so that the dangerous area with a tangent angle of wheel profile smaller than 43.6° will not contact the switch rail when the wheel is lifted by 2 mm. Accordingly, the lateral wear limit at the 5-mm wide section of the curved switch rail shall be reduced from 6 mm (as specified) to 3.5 mm.
Originality/value
The work in this paper is of reference significance to the research on the development law of rail wear in high-speed turnout area and the formulation of relevant standards.
Details
Keywords
Mohammad Ghalambaz, Mahmoud Sabour, Ioan Pop and Dongsheng Wen
The present study aims to address the flow and heat transfer of MgO-MWCNTs/EG hybrid nanofluid in a complex shape enclosure filled with a porous medium. The enclosure is subject…
Abstract
Purpose
The present study aims to address the flow and heat transfer of MgO-MWCNTs/EG hybrid nanofluid in a complex shape enclosure filled with a porous medium. The enclosure is subject to a uniform inclined magnetic field and radiation effects. The effect of the presence of a variable magnetic field on the natural convection heat transfer of hybrid nanofluids in a complex shape cavity is studied for the first time. The geometry of the cavity is an annular space with an isothermal wavy outer cold wall. Two types of the porous medium, glass ball and aluminum metal foam, are adopted for the porous space. The governing equations for mass, momentum and heat transfer of the hybrid nanofluid are introduced and transformed into non-dimensional form. The actual available thermal conductivity and dynamic viscosity data for the hybrid nanofluid are directly used for thermophysical properties of the hybrid nanofluid.
Design/methodology/approach
The governing equations for mass, momentum and heat transfer of hybrid nanofluid are introduced and transformed into non-dimensional form. The thermal conductivity and dynamic viscosity of the nanofluid are directly used from the experimental results available in the literature. The finite element method is used to solve the governing equations. Grid check procedure and validations were performed.
Findings
The effect of Hartmann number, Rayleigh number, Darcy number, the shape of the cavity and the type of porous medium on the thermal performance of the cavity are studied. The outcomes show that using the composite nanoparticles boosts the convective heat transfer. However, the rise of the volume fraction of nanoparticles would reduce the overall enhancement. Considering a convective dominant regime of natural convection flow with Rayleigh number of 107, the maximum enhancement ratio (Nusselt number ratio compared to the pure fluid) for the case of glass ball is about 1.17 and for the case of aluminum metal foam is about 1.15 when the volume fraction of hybrid nanoparticles is minimum as 0.2 per cent.
Originality/value
The effect of the presence of a variable magnetic field on the natural convection heat transfer of a new type of hybrid nanofluids, MgO-MWCNTs/EG, in a complex shape cavity is studied for the first time. The results of this paper are new and original with many practical applications of hybrid nanofluids in the modern industry.
Details
Keywords
Yansen Wu, Dongsheng Wen, Anmin Zhao, Haobo Liu and Ke Li
This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and…
Abstract
Purpose
This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and its electric energy performance under continuous soaring conditions.
Design/methodology/approach
The authors develop a specific dynamic model for SUAVs in both soaring and cruise modes. The support vector machine regression (SVMR) is adopted to estimate the thermal position, and it is combined with feedback control to implement the SUAV soaring in the updraft. Then, the optimal path model is built based on the graph theory considering the existence of several thermals distributed in the environment. The procedure is proposed to estimate the electricity cost of SUAV during flight as well as soaring, and making use of dynamic programming to maximize electric energy.
Findings
The simulation results present the integrated control method could allow SUAV to soar with the updraft. In addition, the proposed approach allows the SUAV to fly to the destination using distributed thermals while reducing the electric energy use.
Originality/value
Two simplified dynamic models are constructed for simulation considering there are different flight mode. Besides, the data-driven-based SVMR method is proposed to support SUAV soaring. Furthermore, instead of using length, the energy cost coefficient in optimization problem is set as electric power, which is more suitable for SUAV because its advantage is to transfer the three-dimensional path planning problem into the two-dimensional.
Details
Keywords
Wenfu Wang, Dongsheng Zhang, Hongwei Wang, Qingxiang Zhu and Hakimeh Morabbi Heravi
To attain green economic efficiency, small, micro and medium-sized firms must follow environmental paradigms. This research aims to discover the relationship between green…
Abstract
Purpose
To attain green economic efficiency, small, micro and medium-sized firms must follow environmental paradigms. This research aims to discover the relationship between green intellectual capital, green entrepreneurial orientation, green marketing, green organizational culture and competitive advantage strategies to attain sustainable manufacturing business success.
Design/methodology/approach
Today, many companies have accepted their responsibilities, that their operations should not harm the environment. This paper aims to discover the relationship between green factors and competitive advantage strategies to succeed in sustainable manufacturing. The employees of the large manufacturing firms in China are the sample population of the present investigation. Through simple random sampling, surveys were distributed via email. The present study was a quantitative analysis. The analytical tool utilized here was structural equation modeling and SmartPLS program applications.
Findings
The empirical outcomes find that green intellectual capital positively influences competitive advantages and sustainable success in business. In addition, the impact of green entrepreneurial orientation on competitive advantages and sustainable success is positive and significant. The findings illustrated that green marketing is an essential factor in competitive advantage and sustainable success in business. Another point is that green organizational culture positively affects competitive advantages and sustainable success. Finally, competitive advantages have significantly affected sustainable success in business.
Practical implications
The outcomes help specialists enhance their practices to reflect sustainable business efficiency and competitive advantages.
Originality/value
This is the first study that examined businesses' sustainable success and green factors in a comprehensive model and using a specific sample of manufacturing companies based on green technologies.
Details
Keywords
Yanzhong Wang and Bin Wei
The purpose of this study is to investigate wet multi-disc brake temperature field and optimal oil supply under continuous braking condition. The oil supply of wet multi-disc…
Abstract
Purpose
The purpose of this study is to investigate wet multi-disc brake temperature field and optimal oil supply under continuous braking condition. The oil supply of wet multi-disc brake has a direct impact on the drivability and fuel economy for tracked vehicles. Too small flow will result in the higher temperature and failure of brake while excessive one will lead to slow engagement increasing disengaged torque and the transmission efficiency could decline notably. The optimal oil supply and brake temperature field were obtained in this research.
Design/methodology/approach
This article investigated on the heat dissipation capability and optimal oil supply of the brake by the means of CFX model. The working condition was continuous braking and the lubricating and cooling factors were included in the model.
Findings
That the complex trends with increased oil flow is inconsistent with the traditional formula in which the effects of grooves were neglected. The fitting curve of optimal oil supply can predict various needed oil flow in various rotating speed and it provides a theoretical guidance for oil supply design.
Originality/value
Traditional empirical formula of heat transfer coefficient and Reynolds equation solved by different methods could be difficult to deal with the complex boundary conditions of wet multi-disc brake. CFX model can solve the problem of complex boundary condition. The optimal oil supply curve can provide a theoretical guidance for oil supply design.