Search results

1 – 10 of 34
Article
Publication date: 14 April 2020

Axel Yezeguelian and Askin T. Isikveren

When comparing and contrasting different types of fixed-wing military aircraft on the basis of an energetic efficiency figure-of-merit, unmanned aerial vehicles (UAVs) dedicated…

Abstract

Purpose

When comparing and contrasting different types of fixed-wing military aircraft on the basis of an energetic efficiency figure-of-merit, unmanned aerial vehicles (UAVs) dedicated to tactical medium-altitude long-endurance (MALE) operations appear to have significant potential when hybrid-electric propulsion and power systems (HEPPS) are implemented. Beginning with a baseline Eulair drone, this paper aims to examine the feasibility of retro-fitting with an Autarkic-Parallel-HEPPS architecture to enhance performance of the original single diesel engine.

Design/methodology/approach

In view of the low gravimetric specific energy performance attributes of batteries in the foreseeable future, the best approach was found to be one in which the Parallel-HEPPS architecture has the thermal engine augmented by an organic rankine cycle (ORC). For this study, with the outer mould lines fixed, the goal was to increase endurance without increasing the Eulair drone maximum take-off weight beyond an upper limit of +10%. The intent was to also retain take-off distance and climb performance or, where possible, improve upon these aspects. Therefore, as the focus of the work was on power scheduling, two primary control variables were identified as degree-of-hybridisation for useful power and cut-off altitude during the en route climb phase. Quasi-static methods were used for technical sub-space modelling, and these modules were linked into a constrained optimisation algorithm.

Findings

Results showed that an Autarkic-Parallel-HEPPS architecture comprising an ORC thermal energy recovery apparatus and high-end year-2020 battery, the endurance of the considered aircraft could be increased by 11%, i.e. a total of around 28 h, including de-icing system, in-flight recharge and emergency aircraft recovery capabilities. The same aircraft with the de-icing functionality removed resulted in a 20% increase in maximum endurance to 30 h.

Practical implications

Although the adoption of Series/Parallel-HEPPS only solutions do tend to generate questionable improvements in UAV operational performance, combinations of HEPPS with energy recovery machines that use, for example, an ORC, were found to have merit. Furthermore, such architectural solutions could also offer opportunity to facilitate additional functions like de-icing and emergency aircraft recovery during engine failure, which is either not available for UAVs today or prove to be prohibitive in terms of operational performance attributes when implemented using a conventional PPS approach.

Originality/value

This technical paper highlights a new degree of freedom in terms of power scheduling during climbing transversal flight operations. A control parameter of cut-off altitude for all types of HEPPS-based aircraft should be introduced into the technical decision-making/optimisation/analysis scheme and is seen to be a fundamental aspect when conducting trade-studies with respect to degree-of-hybridisation for useful power.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 February 2020

Thierry Sibilli, Capucine Senne, Hugo Jouan, Askin T. Isikveren and Sabrina Ayat

With the objective to assess potentially performant hybrid-electric architectures, this paper aims to present an aircraft performance level evaluation, in terms of range and…

Abstract

Purpose

With the objective to assess potentially performant hybrid-electric architectures, this paper aims to present an aircraft performance level evaluation, in terms of range and payload, of the synergies between a hybrid-electric energy system configuration and a cryogenic fuel system.

Design/methodology/approach

An unmanned aerial vehicle (UAV) is modeled using an aircraft performance tool, modified to take into account the hybrid nature of the system. The fuel and thermal management systems are modeled looking to maximize the synergistic effects. The electrical system is defined in series with the thermal engine and the performance, in terms of weight and efficiency, are tracked as a function of the cooling temperature.

Findings

The results show up to a 46 per cent increase in range and up to 7 per cent gain on a payload with a reference hybrid-electric aircraft that uses conventional drop-in JP-8 fuel. The configuration that privileges a reduction in mass of the electric motors by taking advantage of the cryogenic coolant temperature shows the highest benefits. A sensitivity study is also presented showing the dependency on the modeling capabilities.

Practical implications

The synergistic combination of a cryogenic fuel and the additional heat sources of a hybrid-electric system with a tendency to higher electric component efficiency or reduced weight results in a considerable performance increase in terms of both range and payload.

Originality/value

The potential synergies between a cryogenic fuel and the electrical system of a hybrid-electric aircraft seem clear; however, at the present, no detailed performance evaluation at aircraft level that includes the fuel, thermal management and electric systems, has been published.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 22 May 2020

Askin T. Isikveren

479

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Article
Publication date: 7 March 2016

Julian Bijewitz, Arne Seitz, Askin T. Isikveren and Mirko Hornung

Motivated by the potential of gaining noticeable improvements in vehicular efficiency, this paper aims to investigate the benefits attainable from introducing a more synergistic…

Abstract

Purpose

Motivated by the potential of gaining noticeable improvements in vehicular efficiency, this paper aims to investigate the benefits attainable from introducing a more synergistic propulsion/airframe integration. In previous work, the concept of a boundary layer ingesting propulsor encircling the aft section of an axisymmetric fuselage was identified to be particularly promising for the realisation of aircraft wake filling, and hence, a significant reduction of the propulsive power required.

Design/methodology/approach

After reviewing the theoretical principles of the propulsive fuselage concept, a book-keeping and model matching procedure is introduced, which is subsequently used to incorporate the numerically computed aerodynamic characteristics of a propulsive fuselage aircraft configuration into a propulsion system (PPS) sizing and performance model. As part of this, design heuristics for important characteristics intrinsic to propulsive fuselage power plants are derived. Thereafter, parametric study results of the PPS are discussed, and the obtained characteristics are compared to those of a conventionally installed power plant. Finally, the impact of the investigated PPS on the integrated performance of a propulsive fuselage aircraft concept is studied, and the results are compared and contrasted to previously conducted analyses based on semi-empirical characteristics.

Findings

It was found that the aircraft-level benefit originally predicted based on semi-empirical methods could be confirmed using the numerically derived PPS design heuristics, specifically an improvement in vehicular efficiency of 10.4 per cent over an advanced conventional reference aircraft.

Practical implications

The approach presented in the paper may serve as a guideline when incorporating the results of high-fidelity aerodynamic methods into a PPS sizing and performance model suitable for aircraft-integrated assessment of a propulsive fuselage concept. The vehicular efficiency potentials offered through the synergistic PPS integration approach are highlighted.

Originality/value

The paper contributes to a deeper understanding of the characteristics of a boundary layer ingesting fuselage fan (FF) power plant relative to a conventionally installed PPS. In addition, a set of PPS design correlations are presented allowing for the integrated sizing of a FF power plant.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 19 October 2010

Askin T. Isikveren

534

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 82 no. 6
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 5 January 2015

Askin T. Isikveren

201

Abstract

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 1
Type: Research Article
ISSN: 1748-8842

Content available
Article
Publication date: 1 January 2014

Askin T. Isikveren

244

Abstract

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 1
Type: Research Article
ISSN: 1748-8842

Content available

Abstract

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 1748-8842

Content available
Article
Publication date: 26 January 2010

Askin T. Isikveren

786

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 82 no. 1
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 25 January 2011

Askin T. Isikveren

595

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 83 no. 1
Type: Research Article
ISSN: 0002-2667

1 – 10 of 34