Search results
1 – 2 of 2Mohd Aslam, Mohd Danish Siddiqi and Aliya Naaz Siddiqui
In 1979, P. Wintgen obtained a basic relationship between the extrinsic normal curvature the intrinsic Gauss curvature, and squared mean curvature of any surface in a Euclidean…
Abstract
Purpose
In 1979, P. Wintgen obtained a basic relationship between the extrinsic normal curvature the intrinsic Gauss curvature, and squared mean curvature of any surface in a Euclidean 4-space with the equality holding if and only if the curvature ellipse is a circle. In 1999, P. J. De Smet, F. Dillen, L. Verstraelen and L. Vrancken gave a conjecture of Wintgen inequality, named as the DDVV-conjecture, for general Riemannian submanifolds in real space forms. Later on, this conjecture was proven to be true by Z. Lu and by Ge and Z. Tang independently. Since then, the study of Wintgen’s inequalities and Wintgen ideal submanifolds has attracted many researchers, and a lot of interesting results have been found during the last 15 years. The main purpose of this paper is to extend this conjecture of Wintgen inequality for bi-slant submanifold in conformal Sasakian space form endowed with a quarter symmetric metric connection.
Design/methodology/approach
The authors used standard technique for obtaining generalized Wintgen inequality for bi-slant submanifold in conformal Sasakian space form endowed with a quarter symmetric metric connection.
Findings
The authors establish the generalized Wintgen inequality for bi-slant submanifold in conformal Sasakian space form endowed with a quarter symmetric metric connection, and also find conditions under which the equality holds. Some particular cases are also stated.
Originality/value
The research may be a challenge for new developments focused on new relationships in terms of various invariants, for different types of submanifolds in that ambient space with several connections.
Details
Keywords
Mohd Danish Siddiqi, Sudhakar Kumar Chaubey and Aliya Naaz Siddiqui
The central idea of this research article is to examine the characteristics of Clairaut submersions from Lorentzian trans-Sasakian manifolds of type (α, β) and also, to enhance…
Abstract
Purpose
The central idea of this research article is to examine the characteristics of Clairaut submersions from Lorentzian trans-Sasakian manifolds of type (α, β) and also, to enhance this geometrical analysis with some specific cases, namely Clairaut submersion from Lorentzian α-Sasakian manifold, Lorentzian β-Kenmotsu manifold and Lorentzian cosymplectic manifold. Furthermore, the authors discuss some results about Clairaut Lagrangian submersions whose total space is a Lorentzian trans-Sasakian manifolds of type (α, β). Finally, the authors furnished some examples based on this study.
Design/methodology/approach
This research discourse based on classifications of submersion, mainly Clairaut submersions, whose total manifolds is Lorentzian trans-Sasakian manifolds and its all classes like Lorentzian Sasakian, Lorenztian Kenmotsu and Lorentzian cosymplectic manifolds. In addition, the authors have explored some axioms of Clairaut Lorentzian submersions and illustrates our findings with some non-trivial examples.
Findings
The major finding of this study is to exhibit a necessary and sufficient condition for a submersions to be a Clairaut submersions and also find a condition for Clairaut Lagrangian submersions from Lorentzian trans-Sasakian manifolds.
Originality/value
The results and examples of the present manuscript are original. In addition, more general results with fair value and supportive examples are provided.
Details