Search results

1 – 10 of 14
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 5 September 2016

Abbas Saadatmandi and Zeinab Sanatkar

The purpose of this paper is to develop an efficient method for solving the magneto-hydrodynamic (MHD) boundary layer flow of an upper-convected Maxwell (UCM) fluid over a porous…

104

Abstract

Purpose

The purpose of this paper is to develop an efficient method for solving the magneto-hydrodynamic (MHD) boundary layer flow of an upper-convected Maxwell (UCM) fluid over a porous isothermal stretching sheet.

Design/methodology/approach

The paper applied a collocation approach based on rational Legendre functions for solving the third-order non-linear boundary value problem, describing the MHD boundary layer flow of an UCM fluid over a porous isothermal stretching sheet. This method solves the problem on the semi-infinite domain without transforming domain of the problem to a finite domain.

Findings

This approach reduces the solution of a problem to the solution of a system of algebraic equations. The numerical values of the skin friction coefficient are presented and analyzed for various parameters of interest in the problem. The authors also compare the results of this work with some recent results and show that the new method is efficient and applicable.

Originality/value

The method solves this problem without use of discrete variables and linearization or small perturbation. Also it was confirmed by the theorem and figure of absolute coefficients that this approach has exponentially convergence rate.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 3 August 2012

Mehdi Dehghan, Jalil Manafian and Abbas Saadatmandi

Rosenau‐Hyman equation was discovered as a simplified model to study the role of nonlinear dispersion on pattern formation in liquid drops. Also, this equation has important roles…

267

Abstract

Purpose

Rosenau‐Hyman equation was discovered as a simplified model to study the role of nonlinear dispersion on pattern formation in liquid drops. Also, this equation has important roles in the modelling of various problems in physics and engineering. The purpose of this paper is to present the solution of Rosenau‐Hyman equation.

Design/methodology/approach

This paper aims to present the solution of the Rosenau‐Hyman equation by means of semi‐analytical approaches which are based on the homotopy perturbation method (HPM), variational iteration method (VIM) and Adomian decomposition method (ADM).

Findings

These techniques reduce the volume of calculations by not requiring discretization of the variables, linearization or small perturbations. Numerical solutions obtained by these methods are compared with the exact solutions, revealing that the obtained solutions are of high accuracy. These results reveal that the proposed methods are very effective and simple to perform.

Originality/value

Efficient techniques are developed to find the solution of an important equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 9 August 2011

Mehdi Dehghan, Jalil Manafian Heris and Abbas Saadatmandi

The purpose of this paper is to use He's Exp‐function method (EFM) to construct solitary and soliton solutions of the nonlinear evolution equation.

446

Abstract

Purpose

The purpose of this paper is to use He's Exp‐function method (EFM) to construct solitary and soliton solutions of the nonlinear evolution equation.

Design/methodology/approach

This technique is straightforward and simple to use and is a powerful method to overcome some difficulties in the nonlinear problems.

Findings

This method is developed for searching exact traveling wave solutions of the nonlinear partial differential equations. The EFM presents a wider applicability for handling nonlinear wave equations.

Originality/value

The paper shows that EFM, with the help of symbolic computation, provides a straightforward and powerful mathematical tool for solving nonlinear evolution equations. Application of EFM to Fitzhugh‐Nagumo equation illustrates its effectiveness.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 12 June 2017

Ali Saleh Alshomrani, Sapna Pandit, Abdullah K. Alzahrani, Metib Said Alghamdi and Ram Jiwari

The main purpose of this work is the development of a numerical algorithm based on modified cubic trigonometric B-spline functions for computational modelling of hyperbolic-type…

215

Abstract

Purpose

The main purpose of this work is the development of a numerical algorithm based on modified cubic trigonometric B-spline functions for computational modelling of hyperbolic-type wave equations. These types of equations describe a variety of physical models in the vibrations of structures, nonlinear optics, quantum field theory and solid-state physics, etc.

Design/methodology/approach

Dirichlet boundary conditions cannot be handled easily by cubic trigonometric B-spline functions. Then, a modification is made in cubic trigonometric B-spline functions to handle the Dirichlet boundary conditions and a numerical algorithm is developed. The proposed algorithm reduced the hyperbolic-type wave equations into a system of first-order ordinary differential equations (ODEs) in time variable. Then, stability-preserving SSP-RK54 scheme and the Thomas algorithm are used to solve the obtained system. The stability of the algorithm is also discussed.

Findings

A different technique based on modified cubic trigonometric B-spline functions is proposed which is quite different from the schemes developed (Abbas et al., 2014; Nazir et al., 2016) and depicts the computational modelling of hyperbolic-type wave equations.

Originality/value

To the best of the authors’ knowledge, this technique is novel for solving hyperbolic-type wave equations and the developed algorithm is free from quasi-linearization process and finite difference operators for time derivatives. This algorithm gives better results than the results discussed in literature (Dehghan and Shokri, 2008; Batiha et al., 2007; Mittal and Bhatia, 2013; Jiwari, 2015).

Access Restricted. View access options
Article
Publication date: 20 September 2011

Mehdi Dehghan and Fatemeh Shakeri

Multi‐point boundary value problems have important roles in the modelling of various problems in physics and engineering. This paper aims to present the solution of ordinary…

481

Abstract

Purpose

Multi‐point boundary value problems have important roles in the modelling of various problems in physics and engineering. This paper aims to present the solution of ordinary differential equations with multi‐point boundary value conditions by means of a semi‐numerical approach which is based on the homotopy analysis method.

Design/methodology/approach

The convergence of the obtained solution is expressed and some typical examples are employed to illustrate validity, effectiveness and flexibility of this procedure. This approach, in contrast to perturbation techniques, is valid even for systems without any small/large parameters and therefore it can be applied more widely than perturbation techniques, especially when there do not exist any small/large quantities.

Findings

Unlike other analytic techniques, this approach provides a convenient way to adjust and control the convergence of approximation series. Some applications will be briefly introduced.

Originality/value

The paper shows how an important boundary value problem is solved with a semi‐analytical method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Available. Content available
2365

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Access Restricted. View access options
Article
Publication date: 19 February 2024

Muhammad Sohail and Syed Tehseen Abbas

This study aims to analyze the Prandtl fluid flow in the presence of better mass diffusion and heat conduction models. By taking into account a linearly bidirectional stretchable…

52

Abstract

Purpose

This study aims to analyze the Prandtl fluid flow in the presence of better mass diffusion and heat conduction models. By taking into account a linearly bidirectional stretchable sheet, flow is produced. Heat generation effect, thermal radiation, variable thermal conductivity, variable diffusion coefficient and Cattaneo–Christov double diffusion models are used to evaluate thermal and concentration diffusions.

Design/methodology/approach

The governing partial differential equations (PDEs) have been made simpler using a boundary layer method. Strong nonlinear ordinary differential equations (ODEs) relate to appropriate non-dimensional similarity variables. The optimal homotopy analysis technique is used to develop solution.

Findings

Graphs analyze the impact of many relevant factors on temperature and concentration. The physical parameters, such as mass and heat transfer rates at the wall and surface drag coefficients, are also displayed and explained.

Originality/value

The reported work discusses the contribution of generalized flux models to note their impact on heat and mass transport.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 20 November 2023

Chandrapushpam T., M. Bhuvaneswari and Sivasankaran Sivanandam

This paper aims to explore the double diffusive magneto-hydrodynamic (MHD) squeezed flow of (Cu–water) nanofluid between two analogous plates filled with Darcy porous material in…

105

Abstract

Purpose

This paper aims to explore the double diffusive magneto-hydrodynamic (MHD) squeezed flow of (Cu–water) nanofluid between two analogous plates filled with Darcy porous material in existence of chemical reaction and external magnetic field.

Design/methodology/approach

The governing nonlinear equations are transformed into ordinary differential equations by means of similarity transforms, and the coupled mass and heat transference equations are resolved analytically with the application of differential transform method (DTM). The effects of different relevant parameters on velocity, temperature and concentration, including the squeeze number, magnetic parameter, Biot number, Darcy number and chemical reaction parameter, are illustrated with figures. In addition, for various parameters, the local skin friction coefficient, local Nusselt number and local Sherwood number are computed and are graphically displayed.

Findings

It is observed that the squeeze number has a direct relationship with Sherwood number and an inverse relationship with skin friction as Biot number increases. With enhanced Biot numbers, the temperature value increases during both squeeze and non-squeeze moments, but the temperature values are higher for squeeze moments compared to the other case.

Practical implications

This research has potential applications in various large-scale enterprises that might benefit from increased productivity.

Social implications

The results are useful to thermal science community.

Originality/value

Unique and valuable insights are provided by studying the impact of chemical reaction on double diffusive MHD squeezing copper–water nanofluid flow between parallel plates filled with porous medium. In addition, this research has potential applications in various large-scale enterprises that might benefit from increased productivity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 27 May 2014

Masood Khan, Azeem Shahzad, Asia Anjum and Fazal M. Mahomed

– The purpose of this paper is to find analytic approximate solutions for time-dependent flow and heat transfer of a Sisko fluid.

129

Abstract

Purpose

The purpose of this paper is to find analytic approximate solutions for time-dependent flow and heat transfer of a Sisko fluid.

Design/methodology/approach

The homotopy analysis method is used to find a family of travelling wave solutions of the governing non-linear problem.

Findings

The effects of different parameters on the velocity and temperature profiles are shown graphically.

Originality/value

The analytic solutions of the system of non-linear ordinary differential equations are constructed in the series form for various values of the power index.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 16 July 2024

Fehid Ishtiaq, R. Ellahi, M.M. Bhatti and Sadiq M. Sait

Cilia serves numerous biological functions in the human body. Malfunctioning of nonmotile or motile cilia will have different kinds of consequences for human health. More…

70

Abstract

Purpose

Cilia serves numerous biological functions in the human body. Malfunctioning of nonmotile or motile cilia will have different kinds of consequences for human health. More specifically, the directed and rhythmic beat of motile cilia facilitates the unidirectional flow of fluids that are crucial in both homeostasis and the development of ciliated tissues. In cilia-dependent hydrodynamic flows, tapering geometries look a lot like the structure of biological pathways and vessels, like airways and lymphatic vessels. In this paper, the Carreau fluid model through the cilia-assisted tapered channel (asymmetric) under the influence of induced magnetic field and convective heat transfer is investigated.

Design/methodology/approach

Lubrication theory is a key player in the mathematical formulation of momentum, magnetic field and energy equations. The formulated nonlinear and coupled differential equations are solved with the aid of the homotopy perturbation method (HPM). The graphical results are illustrated with the help of the computational software “Mathematica.”

Findings

The impact of diverse emerging physical parameters on velocity, induced magnetic field, pressure rise, current density and temperature profiles is presented graphically. It is observed that the cilia length parameter supported the velocity and current density profiles, while the Hartman number and Weissenberg number were opposed. A promising effect of emerging parameters on streamlines is also perceived.

Originality/value

The study provides novel aspects of cilia-driven induced magnetohydrodynamics flow of Carreau fluid under the influence of induced magnetic field and convective heat transfer through the asymmetric tapered channel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 14
Per page
102050