K. Stamoulis and A.E. Giannakopoulos
As the dimensions of structures are scaled down to the micro‐ and nano‐domains, the mechanical behavior becomes size dependent and thus, the classical elasticity solutions cannot…
Abstract
Purpose
As the dimensions of structures are scaled down to the micro‐ and nano‐domains, the mechanical behavior becomes size dependent and thus, the classical elasticity solutions cannot be expected to hold. In particular, recent experimental investigations of fatigue strength of metals show pronounced strengthening due to the influences of both grain size and small geometrical dimensions. This paper aims to provide a simple, yet rigorous analytical model in order to address the aforementioned size effects.
Design/methodology/approach
The present study employs a framework based on the type II, strain gradient elasticity theory by Mindlin, embedded into a thermodynamics‐based formulation which considers both mechanical behavior parameters and material lengths, as internal variables, in order to model metal fatigue.
Findings
A thermodynamics‐based, second gradient elasto‐plastic formulation with an explicit material length, which captures the size effects in fatigue of small‐scale metal components, has been established. From a physical viewpoint, the evolution of the internal length in the constitutive equations with the evolution of the intrinsic wavelength (e.g. persistent slip bands spacing) can be identified signifying the splitting of the grains into sub‐regions and consequently, the softening of the material.
Originality/value
The major novelty of the proposed modeling is that the internal characteristic length considered is not a fixed parameter, but evolves with the plastic effective strain amplitude obtained from cyclic loading.
Details
Keywords
This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…
Abstract
This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.
Details
Keywords
Jie Han, Jingjing Yang, Hanchen Yu, Jie Yin, Ming Gao, Zemin Wang and Xiaoyan Zeng
This paper aims to investigate the influence of laser energy density on microstructure and mechanical properties of the selective laser melted (SLMed) Ti6Al4V to complement the…
Abstract
Purpose
This paper aims to investigate the influence of laser energy density on microstructure and mechanical properties of the selective laser melted (SLMed) Ti6Al4V to complement the existing knowledge in additive manufacturing of Ti6Al4V for future application of selective laser melting (SLM) in fabricating Ti6Al4V parts.
Design/methodology/approach
Ti6Al4V alloy is fabricated by SLM by adopting various energy densities. Microstructures and mechanical properties of the Ti6Al4V deposited using different energy densities are characterized.
Findings
Both high relative densities and microhardness can be obtained in the optimized processing window. The decrease of martensite width and spacing can improve the microhardness on both XOY and XOZ sections when the applied EV (defined as the laser energy per unit volume) increases. The width of the columnar grain increases with EV, resulting in a stronger anisotropy in microhardness between XOY and XOZ sections. Residual tensile stresses exist in the SLMed Ti6Al4V and increase with an increasing EV. A tensile strength of 1,268 MPa, a yield strength of 1,030 MPa, and an elongation of 4% can be obtained by using the optimized range of EV.
Originality/value
The microstructure of SLMed Ti6Al4V is quantitatively analysed by measuring the size of columnar grains and the martensites. The anisotropy of microstructures and properties in SLMed Ti6Al4V is characterized and its dependence on laser energy density is established. The residual stress in SLMed Ti6Al4V is characterized and its dependence on laser energy density is established. An optimized processing window to deposit Ti6Al4V alloy by SLM is proposed.
Details
Keywords
Frictional sliding contact problems between laterally graded orthotropic half-planes and a flat rigid stamp are investigated. The presented study aims at guiding engineering…
Abstract
Purpose
Frictional sliding contact problems between laterally graded orthotropic half-planes and a flat rigid stamp are investigated. The presented study aims at guiding engineering applications in the prediction of the contact response of orthotropic laterally graded members.
Design/methodology/approach
The solution procedure is based on a finite element (FE) approach which is conducted with an efficient FE analysis software ANSYS. The spatial gradations of the orthotropic stiffness constants through the horizontal axis are enabled utilizing the homogeneous FE approach. The Augmented Lagrangian contact algorithm is used as an iterative non-linear solution method in the contact analysis.
Findings
The accuracy of the proposed FE solution method is approved by using the comparisons of the results with those computed using an analytical technique. The prominent results indicate that the surface contact stresses can be mitigated upon increasing the degree of orthotropy and positive lateral gradations.
Originality/value
One can infer from the literature survey that, the contact mechanics analysis of orthotropic laterally graded materials has not been investigated so far. In this study, an FE method-based computational solution procedure for the aforementioned problem is addressed. The presented study aims at guiding engineering applications in the prediction of the contact response of orthotropic laterally graded members. Additionally, this study provides some useful points related to computational contact mechanics analysis of orthotropic structures.
Details
Keywords
E.S. Mistakidis and N.P. Politis
In this paper, the effect of the FE discretization density on the results of both convex and nonconvex‐nonsmooth frictional contact and adhesive contact interface problems is…
Abstract
In this paper, the effect of the FE discretization density on the results of both convex and nonconvex‐nonsmooth frictional contact and adhesive contact interface problems is investigated. The tool for this study is a variational formulation leading to an iterative method for the numerical solution of the arising nonconvex‐nonsmooth optimization problems. Various cases of monotone and nonmonotone interface laws are considered and interesting results are obtained.
Details
Keywords
Costas A. Charitidis, Dimitrios A. Dragatogiannis and Elias P. Koumoulos
Lightweight alloys are of major concern, due to their applicability, in transport and industry applications. The purpose of this paper is to perform a comprehensive analysis of…
Abstract
Purpose
Lightweight alloys are of major concern, due to their applicability, in transport and industry applications. The purpose of this paper is to perform a comprehensive analysis of time dependent properties of aluminum alloy by nanoindentation technique, through investigation of creep behavior. Additionally, possible explanations on the time dependent behavior and the influence of the hold period at maximum load and the loading rate on the elastic modulus and hardness results are also analyzed and discussed.
Design/methodology/approach
In this work, a comprehensive analysis of time dependent properties of aluminum alloy by nanoindentation technique was performed, by varying the loading rate, the maximum applied load and the loading time. The stress exponent values are derived from the displacement‐holding time curves. The present experimental setup includes three different approaches: variation of loading rate, maximum applied load and loading time. The creep deformation mechanisms of the alloy, which are dependent on experiment setup, are discussed and the characteristic “elbow” behavior in the unloading part of the curves is also reported.
Findings
The authors found that the stress exponent values obtained are dependent on the applied peak loads and indentation loading rates. Nanoindentation creep testing of aluminum AA6082‐T6 revealed significant creep displacements, where the strain rate reached a steady state after a certain time and the stress decreased with time as the displacement increased during the creep process. The slopes of strain rate versus stress curves (exponent of power‐law creep) for different maximum loads and various holding times, were investigated.
Originality/value
The stress exponent of the constant‐load indentation creep, in all three types of experiments, was found to reduce at low load region. In case of different holding load and time, the stress exponent increased almost linearly and increased very rapidly as the indent size increased, exhibiting an intense size effect.
Details
Keywords
V.K. Gupta, Vijay Kumar and S. Ray
The purpose of this paper is to investigate the effect of imposing linear and quadratic composition gradients on the steady state creep behavior of a rotating functionally graded…
Abstract
Purpose
The purpose of this paper is to investigate the effect of imposing linear and quadratic composition gradients on the steady state creep behavior of a rotating functionally graded Al‐SiCP disc operating under a radial thermal gradient.
Design/methodology/approach
Mathematical model to describe steady state creep behavior in rotating discs made of isotropic aluminum composite containing linear and quadratic distributions of Silicon Carbide (SiCP) in the radial direction has been formulated. The discs are assumed to operate under a radial thermal gradient originating due to braking action as estimated by FEM analysis. The steady state creep behavior of the discs under stresses developing due to rotation has been determined following Sherby's law. Based on the developed model, the distributions of stresses and strain rates have been obtained and compared for various functionally graded material (FGM) discs containing the same average amount (20 vol per cent) of dispersoid. The creep response of a composite disc with uniform SiCP content of 20 vol per cent and operating under a radial thermal gradient has also been computed for comparison with the results obtained for FGM discs.
Findings
The study reveals that the distribution of stresses and strain rates in a rotating composite disc operating under a radial thermal gradient are significantly affected by different particle distributions with in the disc. The creep stresses and steady state creep rates in a rotating FGM disc can be significantly reduced by employing more SiCP particles in the middle compared to the inner and the outer radii.
Originality/value
The study provides an understanding of the required tailoring of composition in order to control creep stresses and creep rates in a rotating FGM disc operating under a radial thermal gradient.
Details
Keywords
This paper gives a bibliographical review of the finite element modelling and simulation of indentation testing from the theoretical as well as practical points of view. The…
Abstract
This paper gives a bibliographical review of the finite element modelling and simulation of indentation testing from the theoretical as well as practical points of view. The bibliography lists references to papers, conference proceedings and theses/dissertations that were published between 1990 and 2002. At the end of this paper, 509 references are listed dealing with subjects such as, fundamental relations and modelling in indentation testing, identification of mechanical properties for specific materials, fracture mechanics problems in indentation, scaling relationship for indentation, indenter geometry and indentation testing.
Details
Keywords
Ceramic materials and glasses have become important in modern industry as well as in the consumer environment. Heat resistant ceramics are used in the metal forming processes or…
Abstract
Purpose
Ceramic materials and glasses have become important in modern industry as well as in the consumer environment. Heat resistant ceramics are used in the metal forming processes or as welding and brazing fixtures, etc. Ceramic materials are frequently used in industries where a wear and chemical resistance are required criteria (seals, liners, grinding wheels, machining tools, etc.). Electrical, magnetic and optical properties of ceramic materials are important in electrical and electronic industries where these materials are used as sensors and actuators, integrated circuits, piezoelectric transducers, ultrasonic devices, microwave devices, magnetic tapes, and in other applications. A significant amount of literature is available on the finite element modelling (FEM) of ceramics and glass. This paper gives a listing of these published papers and is a continuation of the author's bibliography entitled “Finite element modelling of ceramics and glass” and published in Engineering Computations, Vol. 16, 1999, pp. 510‐71 for the period 1977‐1998.
Design/methodology/approach
The form of the paper is a bibliography. Listed references have been retrieved from the author's database, MAKEBASE. Also Compendex has been checked. The period is 1998‐2004.
Findings
Provides a listing of 1,432 references. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.
Originality/value
This paper makes it easy for professionals working with the numerical methods with applications to ceramics and glasses to be up‐to‐date in an effective way.
Details
Keywords
Bhanupratap Gaur, Samrat Sagar, Chetana M. Suryawanshi, Nishant Tikekar, Rupesh Ghyar and Ravi Bhallamudi
Ti6Al4V alloy patient-customized implants (PCI) are often fabricated using laser powder bed fusion (LPBF) and annealed to enhance the microstructural, physical and mechanical…
Abstract
Purpose
Ti6Al4V alloy patient-customized implants (PCI) are often fabricated using laser powder bed fusion (LPBF) and annealed to enhance the microstructural, physical and mechanical properties. This study aims to demonstrate the effects of annealing on the physio-mechanical properties to select optimal process parameters.
Design/methodology/approach
Test samples were fabricated using the Taguchi L9 approach by varying parameters such as laser power (LP), laser velocity (LV) and hatch distance (HD) to three levels. Physical and mechanical test results were used to optimize the parameters for fabricating as-built and annealed implants separately using Grey relational analysis. An optimized parameter set was used for fabricating biological test samples, followed by animal testing to validate the qualified parameters.
Findings
Two optimized sets of process parameters (LP = 100 W, LV = 500 mm/s and HD = 0.08 mm; and LP = 300 W, LV = 1,350 mm/s and HD = 0.08 mm) are suggested suitable for implant fabrication regardless of the inclusion of annealing in the manufacturing process. The absence of any necrosis or reaction on the local tissues after nine weeks validated the suitability of the parameter set for implants.
Practical implications
To help PCI manufacturers in parameter selection and to exclude annealing from the manufacturing process for faster implant delivery.
Originality/value
To the best of the authors’ knowledge, this is probably a first attempt that suggests LPBF parameters that are independent of inclusion of annealing in implant fabrication process.