The fundamental friction studies of rubber have generally dealt with single contact sliders or rollers. It has been demonstrated abundantly that the lubricated friction of rubber…
Abstract
The fundamental friction studies of rubber have generally dealt with single contact sliders or rollers. It has been demonstrated abundantly that the lubricated friction of rubber is mainly the ‘deformation loss’ component of friction. At moderate sliding speeds where thin film lubrication exists and the interface shear drag is small, the friction is the same as in rolling. The rubber substrate is continually deforming ahead of, and recovering behind, the contact in both rolling or sliding cases. Since the deformation of rubber is partially irreversible, energy is lost which is irreversible, energy is lost which is reflected as the ‘deformation loss’ component of friction at the contact. This deformation loss component of friction has been correlated with the “elastic hysteresis” or the “visco‐elastic losses”. The elastic hysteresis consideration alone does not fully explain rubber substrate deformation and friction behaviour. The assumptions used are incompatible. For example, the delayed or incomplete recovery of the rubber substrate behind the contact leads to residual strains which result in the contact area asymmetry as shown in Fig. 1. In contrast, the elastic hysteresis approach assumes Hertzian elastic contact which is symmetric. It may be noted that all ‘lossy’ materials whether plastic or visco‐elastic in nature must involve frictional contact area asymmetry. Various simplified visco‐elastic considerations of the rolling contact have been illustrated, only qualitatively, the contact deformation and frictional loss behaviour. Direct experimental and quantitive verifications have not been attempted, however. Some rigorous visco‐elastic, two dimensional, continuum analyses of the rolling contact are available in the literature and are very complex. It is difficult to use the results of these analyses to the problem of frictional loss evaluation, primarily because linear and simplified visco‐elastic models have been employed. Moreover, for the general friction problem of rubberlike elastomers which are nonlinear visco‐elastic solids of complex descriptions, physical quantification and interpretation of the parameters used in the above analyses are not possible. Employing the method of a visco‐elastic operator, a semi‐analytical technique has been used recently to express the asymmetry of the sliding contact area and the associated deformation loss component of friction. The results of the analyses agree reasonably with the experimental observations. Dynamic material property parameters used in the analyses are obtained from an indentation test arrangement under closely controlled conditions.
Jinnuo Zhang, Ran He, Konstantinos P. Baxevanakis and Andrew Gleadall
This paper aims to investigate the potential for 4D deformation of the smallest building blocks of the material extrusion additive manufacturing (MEAM) process: single extrudates…
Abstract
Purpose
This paper aims to investigate the potential for 4D deformation of the smallest building blocks of the material extrusion additive manufacturing (MEAM) process: single extrudates produced with a single material. In contrast to previous 4D printing approaches where property-variations are realised across multiple layers or with complex composites, this study hypothesises that residual strain varies from top-to-bottom within a single printed extrudate and that this offers an opportunity to achieve controllable 4D printing with the smallest possible resolution (single lines in a single layer).
Design/methodology/approach
The influences of bed temperature, printing temperature, printing speed, extrusion width, extrusion thickness and activation temperature are quantified in terms of residual strain and 4D curvature.
Findings
An almost fourfold variation in curvature was achieved, printing speed and layer thickness greatly affected 4D deformation: the maximum curvature was increased by >600% compared to the minimum curvature when varying printing speed. In addition to rigorous parametric characterisation, a case study demonstrates the 4D deformation of a flat single-layer lattice into a 3D self-formed stent structure comprised of intricate single-extrudate struts. A separate case study demonstrates the resilience of the method by showing results to translate to alternative materials, with alternative printing hardware and with a different 4D activation procedure.
Originality/value
This study successfully proves a new way to achieve intricate 3D structures with the MEAM process, which would be impossible without 4D deformation due to their intricacy and the need for support material. The findings are also relevant to research into undesired warping due to the quantification of residual strain.
Details
Keywords
J.A. Alvarado‐Contreras, M.A. Polak and A. Penlidis
The purpose of this paper is to provide a computational procedure for a novel damage‐coupled material law for semicrystalline polyethylene. Using a damage mechanics approach, the…
Abstract
Purpose
The purpose of this paper is to provide a computational procedure for a novel damage‐coupled material law for semicrystalline polyethylene. Using a damage mechanics approach, the model seeks to gain insight into the mechanical behaviour of polyethylene considering the microstructure and degradation processes occurring under uniaxial tension.
Design/methodology/approach
The material morphology is modelled as a collection of inclusions. Each inclusion consists of crystalline material lying in a thin lamella attached to an amorphous layer. The interface region interconnecting the two phases is the plane through which loads are carried and transferred by the tie molecules. It is assumed that the constitutive model contains complete information about the mechanical behaviour and degradation processes of each constituent. After modelling the two phases independently, the inclusion behaviour is found by applying some compatibility and equilibrium restrictions along the interface plane.
Findings
The model provides a rational representation of the damage process of the intermolecular bonds holding crystals and of the tie‐molecules connecting neighbouring crystallites. The model is also used to analyze the degree of relationship between some of the material properties and the mechanical responses.
Practical implications
In practice, the numerical model clearly helps to understand the influence of the different microstructure properties on the tensile mechanical behaviour of semicrystalline polyethylene – an issue of particular interest in improving material processability and product performance.
Originality/value
To the authors’ knowledge, a phenomenon such as microstructural degradation of polyethylene has not received much attention in the literature. The proposed model successfully captures aspects of the material behaviour considering crystal fragmentation and tie‐molecule rupture.
Details
Keywords
Yunbo Bi, Weimiao Yan and Yinglin Ke
The deformation of a large fuselage panel is unavoidable due to its weak-stiffness and low-rigidity. Sometimes, the assembly accuracy of the panel is out of tolerance. The purpose…
Abstract
Purpose
The deformation of a large fuselage panel is unavoidable due to its weak-stiffness and low-rigidity. Sometimes, the assembly accuracy of the panel is out of tolerance. The purpose of this paper is to propose a method to predict and correct the assembly deformation of a large fuselage panel during digital assembly by using a finite element (FE) analysis and partial least squares regression (PLSR) method.
Design/methodology/approach
A FE model is proposed to optimize the layout of load-transmitting devices to reduce panel deformation after the process of hoisting and supporting. Furthermore, another FE model is established to investigate the deformation behavior of the panel. By orthogonal simulations, the position error data of measurement points representing the precision of the panel are obtained. Then, a mathematical model of the relationship between the position errors of measurement points on the panel and the displacements of numerical control positioners is developed based on the PLSR method.
Findings
The case study shows that the model has a high level of computing accuracy and that the proposed method is an efficient way to correct the panel deformation in digital assembly.
Originality/value
The results of this study will enhance the understanding of the deformation behavior of a panel in aircraft digital assembly and help to improve the assembly precision systematically and efficiently.
Details
Keywords
Zhong Wu, Qing Hu, Zhenbo Qin, Yiwen Zhang, Da-Hai Xia and Wenbin Hu
Nickel-aluminum bronze (NAB) has been widely used in ship propellers. It is always subjected to local micro-plastic deformation in service environments. This paper aims to study…
Abstract
Purpose
Nickel-aluminum bronze (NAB) has been widely used in ship propellers. It is always subjected to local micro-plastic deformation in service environments. This paper aims to study the influence of plastic deformation on the mechanical strength and corrosion resistance of NAB in 3.5 Wt.% NaCl solution.
Design/methodology/approach
Scanning electron microscope and X-ray diffraction were used to analyze the microstructure of NAB alloy with different plastic deformations. Mechanical properties of the sample were measured by tensile experiment, and corrosion behavior was studied by electrochemical measurements and the long-term immersion corrosion test.
Findings
Results showed that the plastic deformation caused lattice distortion but did not change the microstructure of NAB alloy. Microhardness and yield strength of NAB were significantly improved with the increase of deformation. The lattice distortion accelerated the formation of corrosion product film, which made the deformed alloy show a more positive open-circuit potential and an increased Rp. However, during the long-term immersion corrosion, the corrosion resistance of NAB alloys deteriorated with the increase of plastic deformation. This is because larger plastic deformation brought about higher internal stress in corrosion product film, which resulted in the premature peeling of the film and the loss of its protective effect on the alloy substrate.
Originality/value
Tensile plastic deformations were found to cause a decline in the corrosion resistance of NAB. And the mechanism was clarified from the evolution of corrosion products during the corrosion process.
Details
Keywords
Izhan Abdullah, Muhammad Nubli Zulkifli, Azman Jalar and R. Ismail
The relationship between the bulk and localized mechanical properties is critically needed, especially to understand the mechanical performance of solder alloy because of smaller…
Abstract
Purpose
The relationship between the bulk and localized mechanical properties is critically needed, especially to understand the mechanical performance of solder alloy because of smaller sizing trend of solder joint. The purpose of this paper is to investigate the relationship between tensile and nanoindentation tests toward the mechanical properties and deformation behavior of Sn-3.0Ag-0.5Cu (SAC305) lead-free solder wire at room temperature.
Design/methodology/approach
Tensile test with different strain rates of 1.5 × 10-4 s-1, 1.5 × 10-3 s-1, 1.5 × 10-2 s-1 and 1.5 × 10-1 s-1 at room temperature of 25°C were carried out on lead-free Sn-3.0Ag-0.5Cu (SAC305) solder wire. Stress–strain curves and mechanical properties such as yield strength (YS), ultimate tensile strength (UTS) and elongation were determined from the tensile test. Load-depth (P-h) profiles and micromechanical properties, namely, hardness and reduced modulus, were obtained from nanoindentation test. In addition, the deformation mechanisms of SAC305 lead-free solder wire were obtained by measuring the range of creep parameters, namely, stress exponent and strain rate sensitivity, using both of tensile and nanoindentation data.
Findings
It was observed that qualitative results obtained from tensile and nanoindentation tests can be used to identify the changes of the microstructure. The occurrence of dynamic recrystallization and the increase of ductility obtained from tensile test can be used to indicate the increment of grain refinement or dislocation density. Similarly, the occurrence of earliest pop-in event and the highest occurrence of pop-in event observed from nanoindentation also can be used to identify the increase of grain refinement and dislocation density. An increment of strain rates increases the YS and ultimate UTS of SAC305 solder wire. Similarly, the variation of hardness of SAC305 solder wire has the similar trend or linear relationship with the variation of YS and UTS, following the Tabor relation. In contrast, the variation of reduced modulus has a different trend compared to that of hardness. The deformation behavior analysis based on the Holomon’s relation for tensile test and constant load method for nanoindentation test showed the same trend but with different deformation mechanisms. The transition of responsible deformation mechanism was obtained from both tensile and nanoindentation tests which from grain boundary sliding (GBS) to grain boundary diffusion and dislocation climb to grain boundary slide, respectively.
Originality/value
For the current analysis, the relationship between tensile and nanoindentation test was analyzed specifically for the SAC305 lead-free solder wire, which is still lacking. The findings provide a valuable data, especially when comparing the trend and mechanism involved in bulk (tensile) and localized (nanoindentation) methods of testing.
Details
Keywords
Eugenija Strazdiene and Matas Gutauskas
The goal of this research work was experimental investigation and evaluation of biaxial punch deformation processes of anisotropic textile materials. The investigation was aimed…
Abstract
The goal of this research work was experimental investigation and evaluation of biaxial punch deformation processes of anisotropic textile materials. The investigation was aimed to solving the following problems: tofind a new criterion for textile behaviour evaluation in punch loading; to evaluate theeffect of material anisotropy for the geometry offormed shell; to determine the straindistribution in anisotropic shell. The experimental data of X‐ray diffraction analysis showed that friction at specimen/punch contact, which earlier was ignored, has a significant effect upon the parameters of the punching process.
Details
Keywords
Jun Wang, Rahul Rai and Jason N. Armstrong
This paper aims to clarify the relationship between mechanical behaviors and the underlying geometry of periodic cellular structures. Particularly, the answer to the following…
Abstract
Purpose
This paper aims to clarify the relationship between mechanical behaviors and the underlying geometry of periodic cellular structures. Particularly, the answer to the following research question is investigated: Can seemingly different geometries of the repeating unit cells of periodic cellular structure result in similar functional behaviors? The study aims to cluster the geometry-functional behavior relationship into different categories.
Design/methodology/approach
Specifically, the effects of the geometry on the compressive deformation (mechanical behavior) responses of multiple standardized cubic periodic cellular structures (CPCS) at macro scales are investigated through both physical tests and finite element simulations of three-dimensional (3D) printed samples. Additionally, these multiple CPCS can be further nested into the shell of 3D models of various mechanical domain parts to demonstrate the influence of their geometries in practical applications.
Findings
The paper provides insights into how different CPCS (geometrically different unit cells) influence their compressive deformation behaviors. It suggests a standardized strategy for comparing mechanical behaviors of different CPCS.
Originality/value
This paper is the first work in the research domain to investigate if seemingly different geometries of the underlying unit cell can result in similar mechanical behaviors. It also fulfills the need to infill and lattify real functional parts with geometrically complex unit cells. Existing work mainly focused on simple shapes such as basic trusses or cubes with spherical holes.
Details
Keywords
Yongliang Wang, Jin Huang and Guocheng Wang
This study aims to analyse the deep resource mining that causes high in situ stress, and the disturbance of tunnelling and mining which may induce large stress concentration…
Abstract
Purpose
This study aims to analyse the deep resource mining that causes high in situ stress, and the disturbance of tunnelling and mining which may induce large stress concentration, plastic deformation and rock strata compression deformation. The depth of deep resources, excavation rate and multilayered heterogeneity are critical factors of excavation disturbance in deep rock. However, at present, there are few engineering practices used in deep resource mining, and it is difficult to analyse the high in situ stress and dynamic three-dimensional (3D) excavation process in laboratory experiments. As a result, an understanding of the behaviours and mechanisms of the dynamic evolution of the stress field and plastic zone in deep tunnelling and mining surrounding rock is still lacking.
Design/methodology/approach
This study introduced a 3D engineering-scale finite element model and analysed the scheme involved the elastoplastic constitutive and element deletion techniques, while considering the influence of the deep rock mass of the roadway excavation, coal seam mining-induced stress, plastic zone in the process of mining disturbance of the in situ stress state, excavation rate and layered rock mass properties at the depths of 500 m, 1,500 m and 2,500 m of several typical coal seams, and the tunnelling and excavation rates of 0.5 m/step, 1 m/step and 2 m/step. An engineering-scale numerical model of the layered rock and soil body in an actual mining area were also established.
Findings
The simulation results of the surrounding rock stress field, dynamic evolution and maximum value change of the plastic zone, large deformation and settlement of the layered rock mass are obtained. The numerical results indicate that the process of mining can be accelerated with the increase in the tunnelling and excavation rate, but the vertical concentrated stress induced by the surrounding rock intensifies with the increase in the excavation rate, which becomes a crucial factor affecting the instability of the surrounding rock. The deep rock mass is in the high in situ stress state, and the stress and plastic strain maxima of the surrounding rock induced by the tunnelling and mining processes increase sharply with the excavation depth. In ultra-deep conditions (depth of 2,500 m), the maximum vertical stress is quickly reached by the conventional tunnelling and mining process. Compared with the deep homogeneous rock mass model, the multilayered heterogeneous rock mass produces higher mining-induced stress and plastic strain in each layer during the entire process of tunnelling and mining, and each layer presents a squeeze and dislocation deformation.
Originality/value
The results of this study can provide a valuable reference for the dynamic evolution of stress and plastic deformation in roadway tunnelling and coal seam mining to investigate the mechanisms of in situ stress at typical depths, excavation rates, stress concentrations, plastic deformations and compression behaviours of multilayered heterogeneity.
Details
Keywords
Tian Tian, Ruibo Zhao, Dongbo Wei, Kai Yang and Pingze Zhang
The purpose of this paper is to expound the relationship among microstructure, mechanical property, tribological behavior and deformation mechanism of carburized layer deposited…
Abstract
Purpose
The purpose of this paper is to expound the relationship among microstructure, mechanical property, tribological behavior and deformation mechanism of carburized layer deposited on Ti-6Al-4V alloy by double-glow plasma hydrogen-free carburizing surface technology.
Design/methodology/approach
Morphologies and phase compositions of the carburized layer were observed by scanning electron microscope and X-ray diffraction. The micro-hardness tests were used to evaluate the surface and cross-sectional hardness of carburized layer. The reciprocating friction and wear experiments under various load conditions were implemented to investigate the tribological behavior of carburized layer. Moreover, scratch test with ramped loading pattern was carried out to illuminate the deformation mechanism of carburized layer.
Findings
Compared to substrate, the hardness of surface improved to ∼1,100 HV0.1, while the hardness profile of carburized layer presented gradual decrease from ∼1,100 to ∼300 HV0.1 within the distance of the total carburizing-affected region about 30 µm. The coefficient of friction, wear rate and wear morphology of carburized layer were analyzed. Scratch test indicated that the deformation process of carburized layer could be classified into three mechanisms (elastic, changing elastic–plastic and stable elastic–plastic mechanisms), and the deformation transition of the carburizing-affected region was from changing elastic–plastic to elastic mechanisms. Both the elastic and changing elastic–plastic mechanisms are conducive to the wearing course.
Originality/value
Using this technology, hydrogen embrittlement was avoided and wear resistance property of titanium alloy was greatly improved. Simultaneously, the constitutive relation during the whole loading process was deduced in terms of scratch approach, and the deformation mechanism of carburized layer was discussed from a novel viewpoint.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0489/