Search results

1 – 10 of over 1000
Per page
102050
Citations:
Loading...
Available. Content available
Article
Publication date: 7 March 2016

Z.Q. Zhu

1528

Abstract

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Available. Open Access. Open Access
Article
Publication date: 21 January 2022

Yong Li, Yingchun Zhang, Gongnan Xie and Bengt Ake Sunden

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat…

1582

Abstract

Purpose

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat transfer.

Design/methodology/approach

A brief review of current research on supercritical aviation kerosene is presented in views of the surrogate model of hydrocarbon fuels, chemical cracking mechanism of hydrocarbon fuels, thermo-physical properties of hydrocarbon fuels, turbulence models, flow characteristics and thermal performances, which indicates that more efforts need to be directed into these topics. Therefore, supercritical thermal transport of n-decane is then computationally investigated in the condition of thermal pyrolysis, while the ASPEN HYSYS gives the properties of n-decane and pyrolysis products. In addition, the one-step chemical cracking mechanism and SST k-ω turbulence model are applied with relatively high precision.

Findings

The existing surrogate models of aviation kerosene are limited to a specific scope of application and their thermo-physical properties deviate from the experimental data. The turbulence models used to implement numerical simulation should be studied to further improve the prediction accuracy. The thermal-induced acceleration is driven by the drastic density change, which is caused by the production of small molecules. The wall temperature of the combustion chamber can be effectively reduced by this behavior, i.e. the phenomenon of heat transfer deterioration can be attenuated or suppressed by thermal pyrolysis.

Originality/value

The issues in numerical studies of supercritical aviation kerosene are clearly revealed, and the conjugation mechanism between thermal pyrolysis and convective heat transfer is initially presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Available. Content available
Article
Publication date: 2 August 2021

Modupeola Dada, Patricia Popoola and Ntombi Mathe

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential…

2134

Abstract

Purpose

This study aims to review the recent advancements in high entropy alloys (HEAs) called high entropy materials, including high entropy superalloys which are current potential alternatives to nickel superalloys for gas turbine applications. Understandings of the laser surface modification techniques of the HEA are discussed whilst future recommendations and remedies to manufacturing challenges via laser are outlined.

Design/methodology/approach

Materials used for high-pressure gas turbine engine applications must be able to withstand severe environmentally induced degradation, mechanical, thermal loads and general extreme conditions caused by hot corrosive gases, high-temperature oxidation and stress. Over the years, Nickel-based superalloys with elevated temperature rupture and creep resistance, excellent lifetime expectancy and solution strengthening L12 and γ´ precipitate used for turbine engine applications. However, the superalloy’s density, low creep strength, poor thermal conductivity, difficulty in machining and low fatigue resistance demands the innovation of new advanced materials.

Findings

HEAs is one of the most frequently investigated advanced materials, attributed to their configurational complexity and properties reported to exceed conventional materials. Thus, owing to their characteristic feature of the high entropy effect, several other materials have emerged to become potential solutions for several functional and structural applications in the aerospace industry. In a previous study, research contributions show that defects are associated with conventional manufacturing processes of HEAs; therefore, this study investigates new advances in the laser-based manufacturing and surface modification techniques of HEA.

Research limitations/implications

The AlxCoCrCuFeNi HEA system, particularly the Al0.5CoCrCuFeNi HEA has been extensively studied, attributed to its mechanical and physical properties exceeding that of pure metals for aerospace turbine engine applications and the advances in the fabrication and surface modification processes of the alloy was outlined to show the latest developments focusing only on laser-based manufacturing processing due to its many advantages.

Originality/value

It is evident that high entropy materials are a potential innovative alternative to conventional superalloys for turbine engine applications via laser additive manufacturing.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Available. Open Access. Open Access
Article
Publication date: 15 December 2021

Guangxing Ji, Zhizhu Lai, Dan Yan, Leying Wu and Zheng Wang

The purpose of this study is to assess the spatiotemporal patterns of future meteorological drought in the Yellow River Basin under different representative concentration pathway…

963

Abstract

Purpose

The purpose of this study is to assess the spatiotemporal patterns of future meteorological drought in the Yellow River Basin under different representative concentration pathway (RCP) scenarios.

Design/methodology/approach

Delta method is used to process the future climate data of the global climate models, then analyzed the spatiotemporal variation trend of drought in the Yellow River Basin based on standardized precipitation evaporation index (SPEI) under four RCP scenarios.

Findings

This research was funded by the National Natural Science Foundation of China (41901239), Soft Science Research Project of Henan Province (212400410077, 192400410085), the National Key Research and Development Program of China (2016YFA0602703), China Postdoctoral Science Foundation (2018M640670) and the special fund of top talents in Henan Agricultural University (30501031).

Originality/value

This study can provide support for future meteorological drought management and prevention in the Yellow River Basin and provide a theoretical basis for water resources management.

Details

International Journal of Climate Change Strategies and Management, vol. 14 no. 1
Type: Research Article
ISSN: 1756-8692

Keywords

Available. Open Access. Open Access
Article
Publication date: 12 December 2022

Mitja Garmut, Simon Steentjes and Martin Petrun

Small highly saturated interior permanent magnet- synchronous machines (IPMSMs) show a very nonlinear behaviour. Such machines are mostly controlled with a closed-loop cascade…

1123

Abstract

Purpose

Small highly saturated interior permanent magnet- synchronous machines (IPMSMs) show a very nonlinear behaviour. Such machines are mostly controlled with a closed-loop cascade control, which is based on a d-q two-axis dynamic model with constant concentrated parameters to calculate the control parameters. This paper aims to present the identification of a complete current- and rotor position-dependent d-q dynamic model, which is derived by using a finite element method (FEM) simulation. The machine’s constant parameters are determined for an operation on the maximum torque per ampere (MTPA) curve. The obtained MTPA control performance was evaluated on the complete FEM-based nonlinear d-q model.

Design/methodology/approach

A FEM model was used to determine the nonlinear properties of the complete d-q dynamic model of the IPMSM. Furthermore, a fitting procedure based on the nonlinear MTPA curve is proposed to determine adequate constant parameters for MTPA operation of the IPMSM.

Findings

The current-dependent d-q dynamic model of the machine models the relevant dynamic behaviour of the complete current- and rotor position-dependent FEM-based d-q dynamic model. The most adequate control response was achieved while using the constant parameters fitted to the nonlinear MTPA curve by using the proposed method.

Originality/value

The effect on the motor’s steady-state and dynamic behaviour of differently complex d-q dynamic models was evaluated. A workflow to obtain constant set of parameters for the decoupled operation in the MTPA region was developed and their effect on the control response was analysed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Available. Open Access. Open Access
Article
Publication date: 4 December 2023

Yonghua Li, Zhe Chen, Maorui Hou and Tao Guo

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

504

Abstract

Purpose

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Design/methodology/approach

Based on the finite element approach coupled with the improved beluga whale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the design of the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar were defined as random variables, and the torsion bar's mass and strength were investigated using finite elements. Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whale optimization (BWO) algorithm and run case studies.

Findings

The findings demonstrate that the IBWO has superior solution set distribution uniformity, convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimize the anti-roll torsion bar design. The error between the optimization and finite element simulation results was less than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress was reduced by 35% and the stiffness was increased by 1.9%.

Originality/value

The study provides a methodological reference for the simulation optimization process of the lateral anti-roll torsion bar.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Available. Open Access. Open Access
Article
Publication date: 1 April 2024

Ying Miao, Yue Shi and Hao Jing

This study investigates the relationships among digital transformation, technological innovation, industry–university–research collaborations and labor income share in…

2169

Abstract

Purpose

This study investigates the relationships among digital transformation, technological innovation, industry–university–research collaborations and labor income share in manufacturing firms.

Design/methodology/approach

The relationships are tested using an empirical method, constructing regression models, by collecting 1,240 manufacturing firms and 9,029 items listed on the A-share market in China from 2013 to 2020.

Findings

The results indicate that digital transformation has a positive effect on manufacturing companies’ labor income share. Technological innovation can mediate the effect of digital transformation on labor income share. Industry–university–research cooperation can positively moderate the promotion effect of digital transformation on labor income share but cannot moderate the mediating effect of technological innovation. Heterogeneity analysis also found that firms without service-based transformation and nonstate-owned firms are better able to increase their labor income share through digital transformation.

Originality/value

This study provides a new path to increase the labor income share of enterprises to achieve common prosperity, which is important for manufacturing enterprises to better transform and upgrade to achieve high-quality development.

Available. Open Access. Open Access
Article
Publication date: 5 November 2024

Shan Li and Yong Jin Kim

Assessing the efficiency of fresh food cold chain logistics as accurately as possible is essential for industry development planning. This study was designed to analyze the…

300

Abstract

Purpose

Assessing the efficiency of fresh food cold chain logistics as accurately as possible is essential for industry development planning. This study was designed to analyze the efficiency of fresh food cold chain logistics in China.

Design/methodology/approach

A three-stage data envelopment analysis (DEA) model was used to analyze the efficiency of fresh food cold chain logistics in 30 provinces of China from 2013 to 2019. The stochastic frontier analysis (SFA) model in the second stage was used to eliminate the influence of external environmental factors and random disturbances on efficiency analysis results.

Findings

(1) The overall actual efficiency of fresh food cold chain logistics in China is unsatisfactory, with an average technical efficiency of 0.382 over the 7-year period. (2) The national average technical efficiency and average scale efficiency were overestimated by 29.9% and 40.0%, respectively, compared with the actual values. (3) The efficiency of fresh food cold chain logistics does not align with the level of regional economic development. (4) Distinct regional variations exist in the efficiency of fresh food cold chain logistics in China, with higher efficiencies observed in Northwest China and the Central Yangtze River regions, and the lowest efficiencies in the northeast regions.

Originality/value

This study applies a three-stage DEA model to assess the development and regional differences of fresh food cold chain logistics in China, enriching the application of models and empirical analysis in this field. By analyzing the situation in China, it provides ideas and references for other developing countries to develop cold chain logistics.

Details

Journal of International Logistics and Trade, vol. 22 no. 4
Type: Research Article
ISSN: 1738-2122

Keywords

Available. Open Access. Open Access
Article
Publication date: 22 February 2022

Yudi Fernando, Muhammad Shabir Shaharudin and Ahmed Zainul Abideen

The study aims to propose a circular economy-based reverse logistics (CERL) that emphasises the mediation effect of reverse logistics (RL) on sustainable resource commitment and…

9037

Abstract

Purpose

The study aims to propose a circular economy-based reverse logistics (CERL) that emphasises the mediation effect of reverse logistics (RL) on sustainable resource commitment and financial performance.

Design/methodology/approach

The structural equation modelling (SEM) approach has been applied to analyse the data acquired through the survey method that included 113 vendors of automotive supplies of the 1st and 2nd levels.

Findings

The results confirm that CERL acts as an essential intervening entity between resources and financial performance. The findings of the study have provided research and development (R&D) opportunities for the industries to find alternative revenue streams and generate profit from resource investment whilst upholding environmental standards through reverse logistic practices.

Practical implications

Reverse logistic practices are the key components of a circular business model and a sustainable supply chain. The manufacturing companies need to explore critical enablers that can contribute to business productivity and financial growth.

Originality/value

The study has validated a CERL model that portrays the circular economy's resilient relationship with RL practices.

Details

European Journal of Management and Business Economics, vol. 32 no. 1
Type: Research Article
ISSN: 2444-8451

Keywords

Available. Open Access. Open Access
Article
Publication date: 11 April 2022

Liang Wang, Jiaming Wu, Xiaopeng Li, Zhaohui Wu and Lin Zhu

This paper aims to address the longitudinal control problem for person-following robots (PFRs) for the implementation of this technology.

591

Abstract

Purpose

This paper aims to address the longitudinal control problem for person-following robots (PFRs) for the implementation of this technology.

Design/methodology/approach

Nine representative car-following models are analyzed from PFRs application and the linear model and optimal velocity model/full velocity difference model are qualified and selected in the PFR control.

Findings

A lab PFR with the bar-laser-perception device is developed and tested in the field, and the results indicate that the proposed models perform well in normal person-following scenarios.

Originality/value

This study fills a gap in the research on PRFs longitudinal control and provides a useful and practical reference on PFRs longitudinal control for the related research.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

1 – 10 of over 1000
Per page
102050