Search results
1 – 7 of 7Yuran Jin, Xiaolin Zhu, Xiaoxu Zhang, Hui Wang and Xiaoqin Liu
3D printing has been warmly welcomed by clothing enterprises for its customization capacity in recent years. However, such clothing enterprises have to face the digital…
Abstract
Purpose
3D printing has been warmly welcomed by clothing enterprises for its customization capacity in recent years. However, such clothing enterprises have to face the digital transformation challenges brought by 3D printing. Since the business model is a competitive weapon for modern enterprises, there is a research gap between business model innovation and digital transformation challenges for 3D-printing garment enterprises. The aim of the paper is to innovate a new business model for 3D-printing garment enterprises in digital transformation.
Design/methodology/approach
A business model innovation canvas (BMIC), a new method for business model innovation, is used to innovate a new 3D-printing clothing enterprises business model in the context of digital transformation. The business model canvas (BMC) method is adopted to illustrate the new business model. The business model ecosystem is used to design the operating architecture and mechanism of the new business model.
Findings
First, 3D-printing clothing enterprises are facing digital transformation, and they urgently need to innovate new business models. Second, mass customization and distributed manufacturing are important ways of solving the business model problems faced by 3D-printing clothing enterprises in the process of digital transformation. Third, BMIC has proven to be an effective tool for business model innovation.
Research limitations/implications
The new mass deep customization-distributed manufacturing (MDC-DM) business model is universal. As such, it can provide an important theoretical reference for other scholars to study similar problems. The digital transformation background is taken into account in the process of business model innovation. Therefore, this is the first hybrid research that has been focused on 3D printing, garment enterprises, digital transformation and business model innovation. On the other hand, business model innovation is a type of exploratory research, which means that the MDC-DM business model’s application effect cannot be immediately observed and requires further verification in the future.
Practical implications
The new business model MDC-DM is not only applicable to 3D-printing garment enterprises but also to some other enterprises that are either using or will use 3D printing to enhance their core competitiveness.
Originality/value
A new business model, MDC-DM, is created through BMIC, which allows 3D-printing garment enterprises to meet the challenges of digital transformation. In addition, the original canvas of the MDC-DM business model is designed using BMC. Moreover, the ecosystem of the MDC-DM business model is constructed, and its operation mechanisms are comprehensively designed.
Details
Keywords
Yuran Jin, Shoufeng Ji, Li Liu and Wei Wang
More and more enterprises have realized the importance of business model innovation. However, the model tools for it are still scarce. There is a clear research gap in this…
Abstract
Purpose
More and more enterprises have realized the importance of business model innovation. However, the model tools for it are still scarce. There is a clear research gap in this academic field. Therefore, the aim of this study is to put forward a visual business model innovation model.
Design/methodology/approach
The scientific literature clustering paradigm of grounded theory is used to design business model innovation theory model (BMITM). BMITM and the business model innovation options traced back from 870 labels in the grounded process are integrated into a unified framework to build the business model innovation canvas (BMIC).
Findings
BMIC composed of three levels and seven modules is successfully developed. 145 business model innovation options are designed in BMIC. How to use BMIC is explained in detail. Through the analysis of innovation hotspots, the potential business model innovation directions can be found. A new business model of clothing enterprises using 3D printing is innovated with BMIC as an example.
Research limitations/implications
Compared with the previous tools, BMIC owns a clearer business model innovation framework and provides a problem-oriented business model innovation process and mechanism.
Practical implications
BMIC provides a systematic business model innovation solution set and roadmap for business model innovation practitioners.
Originality/value
BMIC, a new tool for business model innovation is put forward for the first time. “Mass Selection Customization-Centralized Manufacturing” designed with BMIC for the clothing enterprises using 3D printing is put forward for the first time.
Details
Keywords
Yuran Jin, Shoufeng Ji, Xin Li and Jiangnan Yu
Additive manufacturing has achieved rapid development in recent years. The purpose of this paper is to visualize the intellectual landscapes of additive manufacturing and identify…
Abstract
Purpose
Additive manufacturing has achieved rapid development in recent years. The purpose of this paper is to visualize the intellectual landscapes of additive manufacturing and identify the hotspots and emerging trends of additive manufacturing, which can provide references for scholars, enterprises and governments to promote the development of theory and practice in the additive manufacturing field.
Design/methodology/approach
Science mapping is a fast-growing interdisciplinary field originated in information science and technology. Based on this methodology, guided by a computational approach, the paper visualizes the co-occurring keywords network and co-citation references network by CiteSpaceIII software to explore the hotspots and emerging trends of additive manufacturing by the following five indicators: highly cited keywords, burst keywords, clusters, landmark references and burst references.
Findings
“Additive manufacturing,” “3D printing,” “3D powder printing,” “consolidation phenomena,” “microstructure,” “rapid prototyping,” etc., are the main hotspots of additive manufacturing. The trends of additive manufacturing generally consist of three stages: the fundamental concepts stage from 1995 to 2000 (“rapid prototyping,” “additive manufacturing,” etc.), the approaches and techniques applications stage from 2001 to 2010 (“stereolithography,” “scaffold,” etc.), and the emerging trends stage from 2011 to the present (“stem cell”, “selective laser,” “ti-6al-4v,” etc.). The research is most abundant in 2010 and 2012. The medical field is an important hotspot of additive manufacturing. Additive manufacturing has been researched in interdiscipline.
Originality/value
The paper maps the perspective of additive manufacturing and explore the hotspots and emerging trends of additive manufacturing.
Details
Keywords
Yuran Jin, Xin Li, R. Ian Campbell and Shoufeng Ji
3D printing is believed to be driving the third industrial revolution. However, a scientometric visualizing of 3D printing research and an exploration its hotspots and emerging…
Abstract
Purpose
3D printing is believed to be driving the third industrial revolution. However, a scientometric visualizing of 3D printing research and an exploration its hotspots and emerging trends are lacking. This study aims to promote the theory development of 3D printing, help researchers to determine the research direction and provide a reference for enterprises and government to plan the development of 3D printing industry by a comprehensive understanding of the hotspots and trends of 3D printing.
Design/methodology/approach
Based on the theory of scientometrics, 2,769 literatures on the 3D printing theme were found in the Web of Science Core Collection’ Science Citation Index Expanded (SCI-EXPANDED) index between 1995-2016. These were analyzed to explore the research hotspots and emerging trends of 3D printing with the software CiteSpaceIII.
Findings
Hotspots had appeared first in 1993, grew rapidly from 2005 and peaked in 2013; hotspots in the “medical field” appeared earliest and have remained extremely active; hotspots have evolved from “drug”, “printer”, “rapid prototyping” and “3D printing” in the 1990s, through “laser-induced consolidation”, “scaffolds”, “sintering” and “metal matrix composites” in the 2000s, to the current hotspots of “stereolithography”, “laser additive manufacturing”, “medical images”; “3D bioprinting”, “titanium”, “Cstem cell” and “chemical reaction” were the emerging hotspots in recent years; “Commercial operation” and “fusion with emerging technology such as big data” may create future hotspots.
Research limitations/implications
It is hard to avoid the possibility of missing important research results on 3D printing. The relevant records could be missing if the query phrases for topic search do not appear in records. Besides, to improve the quality of data, this study selected articles and reviews as the research objects, which may also omit some records.
Originality/value
First, this is the first paper visualizing the hotspots and emerging trends of 3D printing using scientometric tools. Second, not only “burst reference” and “burst keywords” but also “cluster” and “landmark article” are selected as the evaluation factors to judge the hotspots and trends of a domain comprehensively. Third, overall perspective of hotspots and trends of 3D printing is put forward for the first time.
Details
Keywords
Yuran Jin, Robert Campbell, Jinhuan Tang, Huisheng Ji, Danrong Song and Xiaoqin Liu
Global economic growth provides new opportunities for the development of clothing enterprises, but at the same time, the rapid growth of clothing customization demand and the…
Abstract
Purpose
Global economic growth provides new opportunities for the development of clothing enterprises, but at the same time, the rapid growth of clothing customization demand and the gradual increase of clothing costs also pose new challenges for the development of clothing enterprises. In this context, 3D printing technology is injecting new vitality and providing a new development direction for the vigorous development of clothing enterprises. However, with the application of 3D printing technology, more and more clothing enterprises are facing the problem of business model innovation. In view of the lack of relevant research, it is necessary to carry out exploratory research on this issue.
Design/methodology/approach
The business model canvas method was adopted to design business model for clothing enterprises using 3D printing. The simulation model of the designed business model was constructed by a system dynamics method, and the application of the designed business model was analysed by a scenario simulation.
Findings
Mass selective customization-centralized manufacturing (MSC-CM) business model was constructed for clothing enterprises using 3D printing, and a static display was carried out using the BMC method. A dynamic simulation model of the MSC-CM business model was constructed. The future scenario of clothing enterprises using 3D printing was developed, and a simulated enterprise was analysed. The results show that the MSC-CM business model has a good application value. The simulation model of the MSC-CM business model performs the function of a business strategy experiment platform and also has a good practical application value.
Research limitations/implications
The MSC-CM business model is only a typical business model for clothing enterprises using 3D printing. It is necessary to further develop other business models, and some elements of the MSC-CM business model need to be further improved. In addition, the MSC-CM business model simulation uses a general model, which is not suitable for all clothing enterprises using 3D printing. When the model is applied, the relevant enterprises can further adjust and optimize it, thereby improving the validity of the simulation model.
Originality/value
To the best of the authors’ knowledge, this is the first paper on the MSC-CM business model for garment enterprises using 3D printing. Secondly, it is the first time that the business model of clothing enterprises using 3D printing has been simulated. In particular, the proposed business model simulation provides the possibility for testing the business strategy of clothing enterprises using 3D printing. In addition, a positive attempt has been made in the collaborative research of using both a static display business model and a dynamic simulation business model.
Details
Keywords
Amirhossein Termebaf Shirazi, Zahra Zamani Miandashti and Seyed Alireza Momeni
Additive manufacturing offers the ability to produce complex, flexible structures from materials like thermoplastic polyurethane (TPU) for energy-absorption applications. However…
Abstract
Purpose
Additive manufacturing offers the ability to produce complex, flexible structures from materials like thermoplastic polyurethane (TPU) for energy-absorption applications. However, selecting optimal structural parameters to achieve desired mechanical responses remains a challenge. This study aims to investigate the influence of key structural characteristics on the energy absorption and dissipation behavior and the deformation process of 3D-printed flexible TPU line-oriented structures.
Design/methodology/approach
Samples with varying line orientations and infill densities were fabricated using material extrusion and subjected to quasi-static compression tests. The design of experiments methodology explored the significance of design variables and their interaction effects on energy absorption and dissipation.
Findings
The results revealed a statistically significant interaction between infill density and orientation, highlighting their combined influence; however, the effect was less pronounced compared to infill density alone. For low-density structures, changing the orientation from 0°/90° to 45°/−45° and increasing infill density enhanced energy absorption and dissipation, while high-density structures exhibited unique energy absorption behavior influenced by deformation patterns and heterogeneity levels. This study facilitates the prediction of mechanical responses and selection of suitable TPU line-oriented printed parts for energy absorbing applications.
Originality/value
To the best of the authors’ knowledge, the present work have investigated for the first time the energy-related responses of flexible line-oriented TPU structures highlighting the distinction between the low and high density structures.
Graphical abstarct
Details