Search results
1 – 10 of 25Fang Wen, Yun Bai, Xin Zhang, Yao Chen and Ninghai Li
This study aims to improve the passenger accessibility of passenger demands in the end-of-operation period.
Abstract
Purpose
This study aims to improve the passenger accessibility of passenger demands in the end-of-operation period.
Design/methodology/approach
A mixed integer nonlinear programming model for last train timetable optimization of the metro was proposed considering the constraints such as the maximum headway, the minimum headway and the latest end-of-operation time. The objective of the model is to maximize the number of reachable passengers in the end-of-operation period. A solution method based on a preset train service is proposed, which significantly reduces the variables of deciding train services in the original model and reformulates it into a mixed integer linear programming model.
Findings
The results of the case study of Wuhan Metro show that the solution method can obtain high-quality solutions in a shorter time; and the shorter the time interval of passenger flow data, the more obvious the advantage of solution speed; after optimization, the number of passengers reaching the destination among the passengers who need to take the last train during the end-of-operation period can be increased by 10%.
Originality/value
Existing research results only consider the passengers who take the last train. Compared with previous research, considering the overall passenger demand during the end-of-operation period can make more passengers arrive at their destination. Appropriately delaying the end-of-operation time can increase the proportion of passengers who can reach the destination in the metro network, but due to the decrease in passenger demand, postponing the end-of-operation time has a bottleneck in increasing the proportion of passengers who can reach the destination.
Details
Keywords
Siyao Li, Bo Yuan, Yun Bai and Jianfeng Liu
To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following…
Abstract
Purpose
To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure, energy-saving performance of the whole metro system cannot be guaranteed.
Design/methodology/approach
A cooperative train control framework is formulated to regulate a novel train operation mode. The classic train four-phase control strategy is improved for generating specific energy-efficient control schemes for each train. An improved brute force (BF) algorithm with a two-layer searching idea is designed to solve the optimisation model of energy-efficient train control schemes.
Findings
Case studies on the actual metro line in Guangzhou, China verify the effectiveness of the proposed train control methods compared with four-phase control strategy under different kinds of train operation scenarios and calculation parameters. The verification on the computation efficiency as well as accuracy of the proposed algorithm indicates that it meets the requirement of online optimisation.
Originality/value
Most existing studies optimised energy-efficient train timetable or train control strategies through an offline process, which has a defect in coping with the disturbance or delays effectively and promptly during real-time train operation. This paper studies an online optimisation of cooperative train control based on the rolling optimisation idea, where energy-efficient train operation can be realised once train running time is determined, thus mitigating the impact of unpredictable operation situations on the energy-saving performance of trains.
Details
Keywords
Yun Bai, Saeed Babanajad and Zheyong Bian
Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces…
Abstract
Purpose
Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces budgetary limitations. Managing a network of transportation infrastructure assets, especially when the number is large, is a multifaceted challenge. This paper aims to develop a life-cycle cost analysis (LCCA) based transportation infrastructure asset management analytical framework to study the impacts of a few key parameters/factors on deterioration and life-cycle cost. Using the bridge as an example infrastructure type, the framework incorporates an optimization model for optimizing maintenance, repair, rehabilitation (MR&R) and replacement decisions in a finite planning horizon.
Design/methodology/approach
The analytical framework is further developed through a series of model variations, scenario and sensitivity analysis, simulation processes and numerical experiments to show the impacts of various parameters/factors and draw managerial insights. One notable analysis is to explicitly model the epistemic uncertainties of infrastructure deterioration models, which have been overlooked in previous research. The proposed methodology can be adapted to different types of assets for solving general asset management and capital planning problems.
Findings
The experiments and case studies revealed several findings. First, the authors showed the importance of the deterioration model parameter (i.e. Markov transition probability). Inaccurate information of p will lead to suboptimal solutions and results in excessive total cost. Second, both agency cost and user cost of a single facility will have significant impacts on the system cost and correlation between them also influences the system cost. Third, the optimal budget can be found and the system cost is tolerant to budge variations within a certain range. Four, the model minimizes the total cost by optimizing the allocation of funds to bridges weighing the trade-off between user and agency costs.
Originality/value
On the path forward to develop the next generation of bridge management systems methodologies, the authors make an exploration of incorporating the epistemic uncertainties of the stochastic deterioration models into bridge MR&R capital planning and decision-making. The authors propose an optimization approach that does not only incorporate the inherent stochasticity of bridge deterioration but also considers the epistemic uncertainties and variances of the model parameters of Markovian transition probabilities due to data errors or modeling processes.
Details
Keywords
Haiyang Guo, Yun Bai, Qianyun Hu, Huangrui Zhuang and Xujie Feng
To evacuate passengers arriving at intercity railway stations efficiently, metros and intercity railways usually share the same station or have stations close to each other. When…
Abstract
Purpose
To evacuate passengers arriving at intercity railway stations efficiently, metros and intercity railways usually share the same station or have stations close to each other. When intercity trains arrive intensively, a great number of passengers will burst into the metro station connecting with the intercity railway station within a short period, while the number of passengers will decrease substantially when intercity trains arrive sparsely. The metro timetables with regular headway currently adopted in real-world operations cannot handle the injected passenger demand properly. Timetable optimization of metro lines connecting with intercity railway stations is essential to improve service quality.
Design/methodology/approach
Based on arrival times of intercity trains and the entire process for passengers transferring from railway to metro, this paper develops a mathematical model to characterize the time-varying demand of passengers arriving at the platform of a metro station connecting with an intercity railway station. Provided the time-varying passenger demand and capacity of metro trains, a timetable model to optimize train departure time of a bi-direction metro line where an intermediate station connects with an intercity railway station is proposed. The objective is to minimize waiting time of passengers at the connecting station. The proposed timetable model is solved by an adaptive large neighborhood search algorithm.
Findings
Real-world case studies show that the prediction accuracy of the proposed model on passenger demand at the connecting station is higher than 90%, and the timetable model can reduce waiting time of passengers at the connecting station by 28.47% which is increased by 5% approximately than the calculation results of the generic algorithm.
Originality/value
This paper puts forward a model to predict the number of passengers arriving at the platform of connection stations via analyzing the entire process for passengers transferring from intercity trains to metros. Also, a timetable optimization model aiming at minimizing passenger waiting time of a metro line where an intermediate station is connected to an intercity railway station is proposed.
Details
Keywords
Shazwani Mohmad, Kun Yun Lee and Pangie Bakit
This study aims to summarize studies that compared the performance of health-care institutions led by leaders with medical background versus those with no medical background.
Abstract
Purpose
This study aims to summarize studies that compared the performance of health-care institutions led by leaders with medical background versus those with no medical background.
Design/methodology/approach
A systematic search was conducted on three databases: PubMed, Ovid Medline and Google Scholar to identify relevant peer-reviewed studies using the keywords “performance,” “impact,” “physician,” “medical,” “doctor,” “leader,” “healthcare institutions” and “hospital.” Only quantitative studies that compared the performance of health-care institutions led by leaders with medical background versus non-medical background were included. Articles were screened and assessed for eligibility before the relevant data were extracted to summarize, appraise and make a narrative account of the findings.
Findings
A total of eight studies were included, four were based in the USA, two in the UK and one from Germany and one from the Arab World. Half of the studies (n = 4) reported overall better health-care institutional performance in terms of hospital quality ranking such as clinical effectiveness and patient safety under leaders with medical background, whereas one study showed poorer performance. The remaining studies reported mixed results among the different performance indicators, especially financial performance.
Practical implications
While medical background leaders may have an edge in clinical competence to manage health-care institutions, it will be beneficial to equip them with essential management skills to optimize leadership competence and enhance organizational performance.
Originality/value
The exclusive inclusion of quantitative empirical studies that compared health-care institutional performance medical and non-medical leaders provides a clearer link between the relationship between health-care institutional performance and the leaders’ background.
Details
Keywords
Li Xuemei, Yun Cao, Junjie Wang, Yaoguo Dang and Yin Kedong
Research on grey systems is becoming more sophisticated, and grey relational and prediction analyses are receiving close review worldwide. Particularly, the application of grey…
Abstract
Purpose
Research on grey systems is becoming more sophisticated, and grey relational and prediction analyses are receiving close review worldwide. Particularly, the application of grey systems in marine economics is gaining importance. The purpose of this paper is to summarize and review literature on grey models, providing new directions in their application in the marine economy.
Design/methodology/approach
This paper organized seminal studies on grey systems published by Chinese core journal database – CNKI, Web of Science and Elsevier from 1982 to 2018. After searching the aforementioned database for the said duration, the authors used the CiteSpace visualization tools to analyze them.
Findings
The authors sorted the studies according to their countries/regions, institutions, keywords and categories using the CiteSpace tool; analyzed current research characteristics on grey models; and discussed their possible applications in marine businesses, economy, scientific research and education, marine environment and disasters. Finally, the authors pointed out the development trend of grey models.
Originality/value
Although researches are combining grey theory with fractals, neural networks, fuzzy theory and other methods, the applications, in terms of scope, have still not met the demand. With the increasingly in-depth research in marine economics and management, international marine economic research has entered a new period of development. Grey theory will certainly attract scholars’ attention, and its role in marine economy and management will gain considerable significance.
Details
Keywords
Yin Kedong, Shiwei Zhou and Tongtong Xu
To construct a scientific and reasonable indicator system, it is necessary to design a set of standardized indicator primary selection and optimization inspection process. The…
Abstract
Purpose
To construct a scientific and reasonable indicator system, it is necessary to design a set of standardized indicator primary selection and optimization inspection process. The purpose of this paper is to provide theoretical guidance and reference standards for the indicator system design process, laying a solid foundation for the application of the indicator system, by systematically exploring the expert evaluation method to optimize the index system to enhance its credibility and reliability, to improve its resolution and accuracy and reduce its objectivity and randomness.
Design/methodology/approach
The paper is based on system theory and statistics, and it designs the main line of “relevant theoretical analysis – identification of indicators – expert assignment and quality inspection” to achieve the design and optimization of the indicator system. First, the theoretical basis analysis, relevant factor analysis and physical process description are used to clarify the comprehensive evaluation problem and the correlation mechanism. Second, the system structure analysis, hierarchical decomposition and indicator set identification are used to complete the initial establishment of the indicator system. Third, based on expert assignment method, such as Delphi assignments, statistical analysis, t-test and non-parametric test are used to complete the expert assignment quality diagnosis of a single index, the reliability and validity test is used to perform single-index assignment correction and consistency test is used for KENDALL coordination coefficient and F-test multi-indicator expert assignment quality diagnosis.
Findings
Compared with the traditional index system construction method, the optimization process used in the study standardizes the process of index establishment, reduces subjectivity and randomness, and enhances objectivity and scientificity.
Originality/value
The innovation point and value of the paper are embodied in three aspects. First, the system design process of the combined indicator system, the multi-dimensional index screening and system optimization are carried out to ensure that the index system is scientific, reasonable and comprehensive. Second, the experts’ background is comprehensively evaluated. The objectivity and reliability of experts’ assignment are analyzed and improved on the basis of traditional methods. Third, aim at the quality of expert assignment, conduct t-test, non-parametric test of single index, and multi-optimal test of coordination and importance of multiple indicators, enhance experts the practicality of assignment and ensures the quality of expert assignment.
Details