Search results

1 – 10 of 533
Per page
102050
Citations:
Loading...
Available. Content available
Article
Publication date: 15 June 2017

Ali Dadashi, Maxim A. Dulebenets, Mihalis M. Golias and Abdolreza Sheikholeslami

The paper aims to propose a new mathematical model for allocation and scheduling of vessels at multiple marine container terminals of the same port, considering the access channel…

1586

Abstract

Purpose

The paper aims to propose a new mathematical model for allocation and scheduling of vessels at multiple marine container terminals of the same port, considering the access channel depth variations by time of day.

Design/methodology/approach

This paper proposes a new mathematical model for allocation and scheduling of vessels at multiple marine container terminals of the same port, considering the access channel depth variations by time of day. The access channel serves as a gate for vessels entering or leaving the port. During low-depth tidal periods the vessels with deep drafts have to wait until the depth of the access channel reaches the required depth.

Findings

A number of numerical experiments are performed using the operational data collected from Port of Bandar Abbas (Iran). Results demonstrate that the suggested methodology is able to improve the existing port operations and significantly decrease delayed vessel departures.

Originality/value

The contribution of this study to the state of the art is a novel mathematical model for allocation and scheduling of vessels at multiple terminals of the same port, taking into consideration channel depth variations by time of day. To the best of the authors’ knowledge, this is the first continuous berth scheduling linear model that addresses the tidal effects on berth scheduling (both in terms of vessel arrival and departure at/from the berth) at multiple marine container terminals.

Details

Maritime Business Review, vol. 2 no. 2
Type: Research Article
ISSN: 2397-3757

Keywords

Available. Open Access. Open Access
Article
Publication date: 8 July 2020

Yang Li, Yaochen Qin, Liqun Ma and Ziwu Pan

The ecological environment of the Loess Plateau, China, is extremely fragile under the context of global warming. Over the past two decades, the vegetation of the Loess Plateau…

1528

Abstract

Purpose

The ecological environment of the Loess Plateau, China, is extremely fragile under the context of global warming. Over the past two decades, the vegetation of the Loess Plateau has undergone great changes. This paper aims to clarify the response mechanisms of vegetation to climate change, to provide support for the restoration and environmental treatment of vegetation on the Loess Plateau.

Design/methodology/approach

The Savitsky–Golay (S-G) filtering algorithm was used to reconstruct time series of moderate resolution imaging spectroradiometer (MODIS) 13A2 data. Combined with trend analysis and partial correlation analysis, the influence of climate change on the phenology and enhanced vegetation index (EVI) during the growing season was described.

Findings

The S-G filtering algorithm is suitable for EVI reconstruction of the Loess Plateau. The date of start of growing season was found to gradually later along the Southeast–Northwest direction, whereas the date of the end of the growing season showed the opposite pattern and the length of the growing season gradually shortened. Vegetation EVI values decreased gradually from Southeast to Northwest. Vegetation changed significantly and showed clear differentiation according to different topographic factors. Vegetation correlated positively with precipitation from April to July and with temperature from August to November.

Originality/value

This study provides technical support for ecological environmental assessment, restoration of regional vegetation coverage and environmental governance of the Loess Plateau over the past two decades. It also provides theoretical support for the prediction model of vegetation phenology changes based on remote sensing data.

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 4
Type: Research Article
ISSN: 1756-8692

Keywords

Available. Open Access. Open Access
Article
Publication date: 26 December 2023

Elif Ozturk, Hande Bahar Turker and V. Aslihan Nasir

Collaborating with consumers during new product development can provide companies with significant benefits and competitive advantages. Although several studies have been…

1440

Abstract

Purpose

Collaborating with consumers during new product development can provide companies with significant benefits and competitive advantages. Although several studies have been conducted on the design of co-innovation platforms, there is still a need for a more comprehensive understanding of the co-innovation phenomenon. To address this gap, this research aims to identify the critical success factors of co-innovation platforms and provide an extensive analysis of the variables that determine their effectiveness.

Design/methodology/approach

This study presents a systematic literature review of co-innovation platforms based on an analysis of 89 articles published in 50 scholarly journals in the disciplines of information systems, marketing and business, covering the years from 2006 to 2022.

Findings

The review synthesizes the current state of scientific knowledge and groups prior studies thematically as critical success factors of co-innovation platforms. As a result, eight success factors have been identified in terms of quantity and quality of contributions. These factors include product involvement, perceived fairness, sense of community, interactive environment, employee involvement, participant diversity, assessment structure and task design.

Originality/value

The study consolidates existing research about the critical success of co-innovation platforms. It also provides a research framework that incorporates a diverse set of variables that can be used to assess co-innovation performance in future studies.

Details

Innovation & Management Review, vol. 21 no. 3
Type: Research Article
ISSN: 2515-8961

Keywords

Available. Open Access. Open Access
Article
Publication date: 24 July 2024

Zhenhua Qin and Xiao-Lin Li

This paper explores whether fintech paves the way for the transition to carbon neutrality in the context of China’s climate policy uncertainty (CCPU) and the influence of the…

189

Abstract

Purpose

This paper explores whether fintech paves the way for the transition to carbon neutrality in the context of China’s climate policy uncertainty (CCPU) and the influence of the ocean carbon sink market.

Design/methodology/approach

We apply a novel wavelet analysis technique to investigate the time-frequency dependence between the CCPU index, the CSI (China Securities Index) Fintech Theme Index (CFTI) and the Carbon Neutral Concept Index (CNCI).

Findings

The empirical results show that CCPU and CFTI have a detrimental effect on CNCI in high-frequency bands. Furthermore, in low-frequency domains, the development of CFTI can effectively promote the realization of carbon neutrality.

Practical implications

Our findings show that information from the CCPU and CFTI can be utilized to forecast the movement of CNCI. Therefore, the government should strike a balance between fintech development and environmental regulation and, hence, promote the use of renewable energy to reduce carbon emissions, facilitating the orderly and regular development of the ocean carbon sink market.

Originality/value

The development of high-quality fintech and positive climate policy reforms are crucial for achieving carbon neutrality targets and promoting the growth of the marine carbon sink market.

Details

Marine Economics and Management, vol. 7 no. 2
Type: Research Article
ISSN: 2516-158X

Keywords

Available. Open Access. Open Access
Article
Publication date: 8 February 2021

Xuejun Zhao, Yong Qin, Hailing Fu, Limin Jia and Xinning Zhang

Fault diagnosis methods based on blind source separation (BSS) for rolling element bearings are necessary tools to prevent any unexpected accidents. In the field application, the…

786

Abstract

Purpose

Fault diagnosis methods based on blind source separation (BSS) for rolling element bearings are necessary tools to prevent any unexpected accidents. In the field application, the actual signal acquisition is usually hindered by certain restrictions, such as the limited number of signal channels. The purpose of this study is to fulfill the weakness of the existed BSS method.

Design/methodology/approach

To deal with this problem, this paper proposes a blind source extraction (BSE) method for bearing fault diagnosis based on empirical mode decomposition (EMD) and temporal correlation. First, a single-channel undetermined BSS problem is transformed into a determined BSS problem using the EMD algorithm. Then, the desired fault signal is extracted from selected intrinsic mode functions with a multi-shift correlation method.

Findings

Experimental results prove the extracted fault signal can be easily identified through the envelope spectrum. The application of the proposed method is validated using simulated signals and rolling element bearing signals of the train axle.

Originality/value

This paper proposes an underdetermined BSE method based on the EMD and the temporal correlation method for rolling element bearings. A simulated signal and two bearing fault signal from the train rolling element bearings show that the proposed method can well extract the bearing fault signal. Note that the proposed method can extract the periodic fault signal for bearing fault diagnosis. Thus, it should be helpful in the diagnosis of other rotating machinery, such as gears or blades.

Details

Smart and Resilient Transportation, vol. 3 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Available. Open Access. Open Access
Article
Publication date: 15 December 2020

Qiming Chen, Xinyi Fei, Lie Xie, Dongliu Li and Qibing Wang

1. To improve the causality analysis performance, a novel causality detector based on time-delayed convergent cross mapping (TD-CCM) is proposed in this work. 2. Identify the root…

979

Abstract

Purpose

1. To improve the causality analysis performance, a novel causality detector based on time-delayed convergent cross mapping (TD-CCM) is proposed in this work. 2. Identify the root cause of plant-wide oscillations in process control system.

Design/methodology/approach

A novel causality analysis framework is proposed based on denoising and periodicity-removing TD-CCM (time-delayed convergent cross mapping). We first point out that noise and periodicity have adverse effects on causality detection. Then, the empirical mode decomposition (EMD) and detrended fluctuation analysis (FDA) are combined to achieve denoising. The periodicities are effectively removed through singular spectrum analysis (SSA). Following, the TD-CCM can accurately capture the causalities and locate the root cause by analyzing the filtered signals.

Findings

1. A novel causality detector based on denoising and periodicity-removing time-delayed convergent cross mapping (TD-CCM) is proposed. 2. Simulation studies show that the proposed method is able to improve the causality analysis performance. 3. Industrial case study shows the proposed method can be used to analyze the root cause of plant-wide oscillations in process control system.

Originality/value

1. A novel causality detector based on denoising and periodicity-removing time-delayed convergent cross mapping (TD-CCM) is proposed. 2. The influences of noise and periodicity on causality analysis are investigated. 3. Simulations and industrial case shows that the proposed method can improve the causality analysis performance and can be used to identify the root cause of plant-wide oscillations in process control system.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Available. Open Access. Open Access
Article
Publication date: 24 September 2019

Jing Bai, Le Fan, Shuyang Zhang, Zengcui Wang and Xiansheng Qin

Both geometric and non-geometric parameters have noticeable influence on the absolute positional accuracy of 6-dof articulated industrial robot. This paper aims to enhance it and…

5893

Abstract

Purpose

Both geometric and non-geometric parameters have noticeable influence on the absolute positional accuracy of 6-dof articulated industrial robot. This paper aims to enhance it and improve the applicability in the field of flexible assembling processing and parts fabrication by developing a more practical parameter identification model.

Design/methodology/approach

The model is developed by considering both geometric parameters and joint stiffness; geometric parameters contain 27 parameters and the parallelism problem between axes 2 and 3 is involved by introducing a new parameter. The joint stiffness, as the non-geometric parameter considered in this paper, is considered by regarding the industrial robot as a rigid linkage and flexible joint model and adds six parameters. The model is formulated as the form of error via linearization.

Findings

The performance of the proposed model is validated by an experiment which is developed on KUKA KR500-3 robot. An experiment is implemented by measuring 20 positions in the work space of this robot, obtaining least-square solution of measured positions by the software MATLAB and comparing the result with the solution without considering joint stiffness. It illustrates that the identification model considering both joint stiffness and geometric parameters can modify the theoretical position of robots more accurately, where the error is within 0.5 mm in this case, and the volatility is also reduced.

Originality/value

A new parameter identification model is proposed and verified. According to the experimental result, the absolute positional accuracy can be remarkably enhanced and the stability of the results can be improved, which provide more accurate parameter identification for calibration and further application.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Available. Content available
Book part
Publication date: 30 June 2023

Lisa M. Given, Donald O. Case and Rebekah Willson

Free Access. Free Access

Abstract

Details

Looking for Information
Type: Book
ISBN: 978-1-80382-424-6

Available. Content available
2368

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Available. Content available
Book part
Publication date: 30 June 2023

Lisa M. Given, Donald O. Case and Rebekah Willson

Free Access. Free Access

Abstract

Details

Looking for Information
Type: Book
ISBN: 978-1-80382-424-6

1 – 10 of 533
Per page
102050