Search results
1 – 8 of 8Mingyu Gao, Jinghua Xu, Shuyou Zhang and Jianrong Tan
The layer section of laser additive manufacturing (AM) can be rasterized. Subsequently, the rasterized layer section can be converted into sparse matrix. However, large storage…
Abstract
Purpose
The layer section of laser additive manufacturing (AM) can be rasterized. Subsequently, the rasterized layer section can be converted into sparse matrix. However, large storage space is occupied due to the high manufacturing resolution. In order to reduce the storage space, the purpose of this research is to propose a lossless compression method to compress the sparse matrix.
Design/methodology/approach
A lossless compression method for additive manufacturing is proposed. According to manifold and irregularity feature of the object of laser AM, a lossless compression method called continuous rows compressed storage (CRCS) based on continuous rows is innovatively proposed. In particular, the better direction strategy of compression method is selected based on the side-projected area per layer.
Findings
Take human teeth as an example, compared with compressed sparse row (CSR), the CRCS has advantage up to 98.88% in storage space. Compared with block compressed sparse row (BCSR), the CRCS has advantage up to 60.04% in storage space.
Originality/value
The proposed CRCS could be employed to compress the sparse matrixes of rasterized layer sections of laser AM. Compared with common lossless compression method of sparse matrix, the compression ratio of CRCS is greater. CRCS is propitious to reduce the storage space usage, thereby improving transmission efficiency.
Details
Keywords
Guodong Sa, Zhengyang Jiang, Jiacheng Sun, Chan Qiu, Zhenyu Liu and Jianrong Tan
Real-time monitoring of the critical physical fields of core components in complex equipment is of great significance as it can predict potential failures, provide reasonable…
Abstract
Purpose
Real-time monitoring of the critical physical fields of core components in complex equipment is of great significance as it can predict potential failures, provide reasonable preventive maintenance strategies and thereby ensure the service performance of the equipment. This research aims to propose a hierarchical explicit–implicit combined sensing-based real-time monitoring method to achieve the sensing of critical physical field information of core components in complex equipment.
Design/methodology/approach
Sensor deployable and non-deployable areas are divided based on the dynamic and static constraints in actual service. An integrated method of measurement point layout and performance evaluation is used to optimize sensor placement, and an association mapping between information in non-deployable and deployable areas is established, achieving hierarchical explicit–implicit combined sensing of key sensor information for core components. Finally, the critical physical fields of core components are reconstructed and visualized.
Findings
The proposed method is applied to the spindle system of CNC machine tools, and the result shows that this method can effectively monitor the spindle system temperature field.
Originality/value
This research provides an effective method for monitoring the service performance of complex equipment, especially considering the dynamic and static constraints during the service process and detecting critical information in non-deployable areas.
Details
Keywords
Zhengxin Tu, Jinghua Xu, Shuyou Zhang and Jianrong Tan
A biomechanical design method of lightweight full contacted insole based on structural anisotropy bespoke (SAB) is proposed, which can better redistribute the stress distribution…
Abstract
Purpose
A biomechanical design method of lightweight full contacted insole based on structural anisotropy bespoke (SAB) is proposed, which can better redistribute the stress distribution of SAB designed personalized insole.
Design/methodology/approach
The reconstructed joint biomechanics are simulated using finite element analysis (FEA) to develop a lightweight full contact insole. Innovatively, the anisotropic properties of the triply periodic minimal surface (TPMS) structure, which contribute to reducing insole weight, are considered to optimize stress distribution. Additionally, porosity and manufacturing time are included as design objectives. To validate the lightweight insole design, FEA is employed to simulate the stress distribution of the ergonomic insole, which can be fabricated by additive manufacturing (AM) with TPU.
Findings
With a little 0.924% loss in porosity, the maximum stress of lightweight SAB designed insoles is extremely decreased by 19.2917%.
Originality/value
The biomechanical design of the lightweight full contact insole based on SAB can effectively redistribute stress, avoid stress concentration and improve the mechanical properties of the ergonomic individual insole.
Details
Keywords
Mingzhe Tao, Jinghua Xu, Shuyou Zhang and Jianrong Tan
This work aims to provide a rapid robust optimization design solution for parallel robots or mechanisms, thereby circumventing inefficiencies and wastage caused by empirical…
Abstract
Purpose
This work aims to provide a rapid robust optimization design solution for parallel robots or mechanisms, thereby circumventing inefficiencies and wastage caused by empirical design, as well as numerous physical verifications, which can be employed for creating high-quality prototypes of parallel robots in a variety of applications.
Design/methodology/approach
A novel subregional meta-heuristic iteration (SMI) method is proposed for the optimization of parallel robots. Multiple subregional optimization objectives are established and optimization is achieved through the utilisation of an enhanced meta-heuristic optimization algorithm, which roughly employs chaotic mapping in the initialization strategy to augment the diversity of the initial solution. The non-dominated sorting method is utilised for updating strategies, thereby achieving multi-objective optimization.
Findings
The actuator error under the same trajectory is visibly reduced after SMI, with a maximum reduction of 6.81% and an average reduction of 1.46%. Meanwhile, the response speed, maximum bearing capacity and stiffness of the mechanism are enhanced by 63.83, 43.98 and 97.51%, respectively. The optimized mechanism is more robust and the optimization process is efficient.
Originality/value
The proposed robustness multi-objective optimization via SMI is more effective in improving the performance and precision of the parallel mechanisms in various applications. Furthermore, it provides a solution for the rapid and high-quality optimization design of parallel robots.
Details
Keywords
Weifei Hu, Tongzhou Zhang, Xiaoyu Deng, Zhenyu Liu and Jianrong Tan
Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant…
Abstract
Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant attraction in both industry and academia, there is no systematic understanding of DT from its development history to its different concepts and applications in disparate disciplines. The majority of DT literature focuses on the conceptual development of DT frameworks for a specific implementation area. Hence, this paper provides a state-of-the-art review of DT history, different definitions and models, and six types of key enabling technologies. The review also provides a comprehensive survey of DT applications from two perspectives: (1) applications in four product-lifecycle phases, i.e. product design, manufacturing, operation and maintenance, and recycling and (2) applications in four categorized engineering fields, including aerospace engineering, tunneling and underground engineering, wind engineering and Internet of things (IoT) applications. DT frameworks, characteristic components, key technologies and specific applications are extracted for each DT category in this paper. A comprehensive survey of the DT references reveals the following findings: (1) The majority of existing DT models only involve one-way data transfer from physical entities to virtual models and (2) There is a lack of consideration of the environmental coupling, which results in the inaccurate representation of the virtual components in existing DT models. Thus, this paper highlights the role of environmental factor in DT enabling technologies and in categorized engineering applications. In addition, the review discusses the key challenges and provides future work for constructing DTs of complex engineering systems.
Details