Search results
1 – 10 of over 4000Ginevra Gravili, Rohail Hassan, Alexandru Avram and Francesco Schiavone
This paper aims to examine the influence of big data (BD) on human resource management (HRM). It defines how these data can be a useful tool in the decision-making process of…
Abstract
Purpose
This paper aims to examine the influence of big data (BD) on human resource management (HRM). It defines how these data can be a useful tool in the decision-making process of companies’ human resources to obtain a sustainable competitive advantage.
Design/methodology/approach
This paper emphasizes the need to develop a holistic approach to emphasize these relations. Starting from these observations, the document proposes empirical research employing Eurostat data to test the benefits of BD in HRM decisions that optimize the relationship between training, productivity, and well-being.
Findings
The findings estimate HRM decisions and their impact in a broader macroeconomic and microeconomic perspective.
Originality/value
BD research is emerging as a crucial discipline in human resources. To overcome this problem, the paper develops an analysis of the literature on cleaner production and sustainability context; it creates a conceptual framework to clarify whether the existing studies consider the growing intensity of BD on human resources.
Details
Keywords
Martin Nečaský, Petr Škoda, David Bernhauer, Jakub Klímek and Tomáš Skopal
Semantic retrieval and discovery of datasets published as open data remains a challenging task. The datasets inherently originate in the globally distributed web jungle, lacking…
Abstract
Purpose
Semantic retrieval and discovery of datasets published as open data remains a challenging task. The datasets inherently originate in the globally distributed web jungle, lacking the luxury of centralized database administration, database schemes, shared attributes, vocabulary, structure and semantics. The existing dataset catalogs provide basic search functionality relying on keyword search in brief, incomplete or misleading textual metadata attached to the datasets. The search results are thus often insufficient. However, there exist many ways of improving the dataset discovery by employing content-based retrieval, machine learning tools, third-party (external) knowledge bases, countless feature extraction methods and description models and so forth.
Design/methodology/approach
In this paper, the authors propose a modular framework for rapid experimentation with methods for similarity-based dataset discovery. The framework consists of an extensible catalog of components prepared to form custom pipelines for dataset representation and discovery.
Findings
The study proposes several proof-of-concept pipelines including experimental evaluation, which showcase the usage of the framework.
Originality/value
To the best of authors’ knowledge, there is no similar formal framework for experimentation with various similarity methods in the context of dataset discovery. The framework has the ambition to establish a platform for reproducible and comparable research in the area of dataset discovery. The prototype implementation of the framework is available on GitHub.
Details