Search results
1 – 10 of 111Liangjun Su and Halbert L. White
We provide straightforward new nonparametric methods for testing conditional independence using local polynomial quantile regression, allowing weakly dependent data. Inspired by…
Abstract
We provide straightforward new nonparametric methods for testing conditional independence using local polynomial quantile regression, allowing weakly dependent data. Inspired by Hausman's (1978) specification testing ideas, our methods essentially compare two collections of estimators that converge to the same limits under correct specification (conditional independence) and that diverge under the alternative. To establish the properties of our estimators, we generalize the existing nonparametric quantile literature not only by allowing for dependent heterogeneous data but also by establishing a weak consistency rate for the local Bahadur representation that is uniform in both the conditioning variables and the quantile index. We also show that, despite our nonparametric approach, our tests can detect local alternatives to conditional independence that decay to zero at the parametric rate. Our approach gives the first nonparametric tests for time-series conditional independence that can detect local alternatives at the parametric rate. Monte Carlo simulations suggest that our tests perform well in finite samples. We apply our test to test for a key identifying assumption in the literature on nonparametric, nonseparable models by studying the returns to schooling.
Details
Keywords
Badi H. Baltagi, R. Carter Hill, Whitney K. Newey and Halbert L. White
We are pleased to introduce Advances in Econometrics Volume 29: Essays in Honor of Jerry Hausman. This volume contains research papers on the theory and practice of econometrics…
Abstract
We are pleased to introduce Advances in Econometrics Volume 29: Essays in Honor of Jerry Hausman. This volume contains research papers on the theory and practice of econometrics that are linked to, or related to, or inspired by the work of Jerry Hausman. We have divided the contributions into three sections: Estimation, Panel Data and Specification Testing. A visit to Professor Hausman's web page (http://economics.mit.edu/faculty/hausman) will show that he has published extensively in these three areas. His remarkable influence is outlined in “The Diffusion of Hausman's Econometric Ideas” by Zapata and Caminita. Their paper is presented first, before the sections, as it examines way the diffusion of Jerry Hausman's econometric ideas using citation counts, citing authors, and source journals of his most referenced citers.
I would like to thank Carter Hill and other people at LSU who helped organize a very enjoyable conference on the Hausman Specification Test in February 2012. Many of the chapters…
Abstract
I would like to thank Carter Hill and other people at LSU who helped organize a very enjoyable conference on the Hausman Specification Test in February 2012. Many of the chapters in this volume were given at the conference. I was pleased to be around many friends at the conference, and I found the chapters very interesting. I especially appreciate the chapter by Professor Hector Zapata and Ms. Cristina Camanita, which considered the diffusion of my econometrics ideas. In particular, I did not know that these techniques were widely used in other disciplines. I found their approach very innovative and very interesting.
Hector O. Zapata and Cristina M. Caminita
This paper examines the diffusion of Jerry Hausman's econometric ideas using citation counts, citing authors, and source journals of his most referenced citers. Bibliographic…
Abstract
This paper examines the diffusion of Jerry Hausman's econometric ideas using citation counts, citing authors, and source journals of his most referenced citers. Bibliographic information and citation counts of references to econometrics papers were retrieved from Thomson Reuters Web of Science and analyzed to determine the various ways in which Hausman's ideas have spread in econometrics and related disciplines. Econometric growth analysis (Gompertz and logistic functions) is used to measure the diffusion of his contributions. This analysis reveals that the diffusion of Hausman's ideas has been pervasive over time and disciplines. For example, his seminal 1978 paper continues to be strongly cited along exponential growth with total cites mainly in econometrics and other fields such as administrative management, human resources, and psychology. Some of the more recent papers have a growth pattern that resembles that of the 1978 paper. This leads us to conclude that Hausman's econometric contributions will continue to diffuse in years to come. It was also found that five journals have published the bulk of the top cited papers that list Hausman as a reference, namely, Econometrica, Journal of Econometrics, Review of Economic Studies, Academy of Management Journal, and the Journal of Economic Literature. “Specification tests in econometrics” is Hausman's dominant contribution in this citation analysis. We found no previous research on the econometric modeling of citation counts as done in this paper. Thus, we expect to stimulate methodological improvements in future work.
Details
Keywords
George G. Judge and Ron C. Mittelhammer
In the context of competing theoretical economic–econometric models and corresponding estimators, we demonstrate a semiparametric combining estimator that, under quadratic loss…
Abstract
In the context of competing theoretical economic–econometric models and corresponding estimators, we demonstrate a semiparametric combining estimator that, under quadratic loss, has superior risk performance. The method eliminates the need for pretesting to decide between members of the relevant family of econometric models and demonstrates, under quadratic loss, the nonoptimality of the conventional pretest estimator. First-order asymptotic properties of the combined estimator are demonstrated. A sampling study is used to illustrate finite sample performance over a range of econometric model sampling designs that includes performance relative to a Hausman-type model selection pretest estimator. An important empirical problem from the causal effects literature is analyzed to indicate the applicability and econometric implications of the methodology. This combining estimation and inference framework can be extended to a range of models and corresponding estimators. The combining estimator is novel in that it provides directly minimum quadratic loss solutions.
Details
Keywords
Asli Ogunc and Randall C. Campbell
Advances in Econometrics is a series of research volumes first published in 1982 by JAI Press. The authors present an update to the history of the Advances in Econometrics series…
Abstract
Advances in Econometrics is a series of research volumes first published in 1982 by JAI Press. The authors present an update to the history of the Advances in Econometrics series. The initial history, published in 2012 for the 30th Anniversary Volume, describes key events in the history of the series and provides information about key authors and contributors to Advances in Econometrics. The authors update the original history and discuss significant changes that have occurred since 2012. These changes include the addition of five new Senior Co-Editors, seven new AIE Fellows, an expansion of the AIE conferences throughout the United States and abroad, and the increase in the number of citations for the series from 7,473 in 2012 to over 25,000 by 2022.
Details