Search results

1 – 10 of 480
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 8 July 2020

Yang Li, Yaochen Qin, Liqun Ma and Ziwu Pan

The ecological environment of the Loess Plateau, China, is extremely fragile under the context of global warming. Over the past two decades, the vegetation of the Loess Plateau…

1528

Abstract

Purpose

The ecological environment of the Loess Plateau, China, is extremely fragile under the context of global warming. Over the past two decades, the vegetation of the Loess Plateau has undergone great changes. This paper aims to clarify the response mechanisms of vegetation to climate change, to provide support for the restoration and environmental treatment of vegetation on the Loess Plateau.

Design/methodology/approach

The Savitsky–Golay (S-G) filtering algorithm was used to reconstruct time series of moderate resolution imaging spectroradiometer (MODIS) 13A2 data. Combined with trend analysis and partial correlation analysis, the influence of climate change on the phenology and enhanced vegetation index (EVI) during the growing season was described.

Findings

The S-G filtering algorithm is suitable for EVI reconstruction of the Loess Plateau. The date of start of growing season was found to gradually later along the Southeast–Northwest direction, whereas the date of the end of the growing season showed the opposite pattern and the length of the growing season gradually shortened. Vegetation EVI values decreased gradually from Southeast to Northwest. Vegetation changed significantly and showed clear differentiation according to different topographic factors. Vegetation correlated positively with precipitation from April to July and with temperature from August to November.

Originality/value

This study provides technical support for ecological environmental assessment, restoration of regional vegetation coverage and environmental governance of the Loess Plateau over the past two decades. It also provides theoretical support for the prediction model of vegetation phenology changes based on remote sensing data.

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 4
Type: Research Article
ISSN: 1756-8692

Keywords

Available. Open Access. Open Access
Article
Publication date: 26 December 2023

Elif Ozturk, Hande Bahar Turker and V. Aslihan Nasir

Collaborating with consumers during new product development can provide companies with significant benefits and competitive advantages. Although several studies have been…

1440

Abstract

Purpose

Collaborating with consumers during new product development can provide companies with significant benefits and competitive advantages. Although several studies have been conducted on the design of co-innovation platforms, there is still a need for a more comprehensive understanding of the co-innovation phenomenon. To address this gap, this research aims to identify the critical success factors of co-innovation platforms and provide an extensive analysis of the variables that determine their effectiveness.

Design/methodology/approach

This study presents a systematic literature review of co-innovation platforms based on an analysis of 89 articles published in 50 scholarly journals in the disciplines of information systems, marketing and business, covering the years from 2006 to 2022.

Findings

The review synthesizes the current state of scientific knowledge and groups prior studies thematically as critical success factors of co-innovation platforms. As a result, eight success factors have been identified in terms of quantity and quality of contributions. These factors include product involvement, perceived fairness, sense of community, interactive environment, employee involvement, participant diversity, assessment structure and task design.

Originality/value

The study consolidates existing research about the critical success of co-innovation platforms. It also provides a research framework that incorporates a diverse set of variables that can be used to assess co-innovation performance in future studies.

Details

Innovation & Management Review, vol. 21 no. 3
Type: Research Article
ISSN: 2515-8961

Keywords

Available. Open Access. Open Access
Article
Publication date: 24 July 2024

Zhenhua Qin and Xiao-Lin Li

This paper explores whether fintech paves the way for the transition to carbon neutrality in the context of China’s climate policy uncertainty (CCPU) and the influence of the…

189

Abstract

Purpose

This paper explores whether fintech paves the way for the transition to carbon neutrality in the context of China’s climate policy uncertainty (CCPU) and the influence of the ocean carbon sink market.

Design/methodology/approach

We apply a novel wavelet analysis technique to investigate the time-frequency dependence between the CCPU index, the CSI (China Securities Index) Fintech Theme Index (CFTI) and the Carbon Neutral Concept Index (CNCI).

Findings

The empirical results show that CCPU and CFTI have a detrimental effect on CNCI in high-frequency bands. Furthermore, in low-frequency domains, the development of CFTI can effectively promote the realization of carbon neutrality.

Practical implications

Our findings show that information from the CCPU and CFTI can be utilized to forecast the movement of CNCI. Therefore, the government should strike a balance between fintech development and environmental regulation and, hence, promote the use of renewable energy to reduce carbon emissions, facilitating the orderly and regular development of the ocean carbon sink market.

Originality/value

The development of high-quality fintech and positive climate policy reforms are crucial for achieving carbon neutrality targets and promoting the growth of the marine carbon sink market.

Details

Marine Economics and Management, vol. 7 no. 2
Type: Research Article
ISSN: 2516-158X

Keywords

Available. Open Access. Open Access
Article
Publication date: 8 February 2021

Xuejun Zhao, Yong Qin, Hailing Fu, Limin Jia and Xinning Zhang

Fault diagnosis methods based on blind source separation (BSS) for rolling element bearings are necessary tools to prevent any unexpected accidents. In the field application, the…

786

Abstract

Purpose

Fault diagnosis methods based on blind source separation (BSS) for rolling element bearings are necessary tools to prevent any unexpected accidents. In the field application, the actual signal acquisition is usually hindered by certain restrictions, such as the limited number of signal channels. The purpose of this study is to fulfill the weakness of the existed BSS method.

Design/methodology/approach

To deal with this problem, this paper proposes a blind source extraction (BSE) method for bearing fault diagnosis based on empirical mode decomposition (EMD) and temporal correlation. First, a single-channel undetermined BSS problem is transformed into a determined BSS problem using the EMD algorithm. Then, the desired fault signal is extracted from selected intrinsic mode functions with a multi-shift correlation method.

Findings

Experimental results prove the extracted fault signal can be easily identified through the envelope spectrum. The application of the proposed method is validated using simulated signals and rolling element bearing signals of the train axle.

Originality/value

This paper proposes an underdetermined BSE method based on the EMD and the temporal correlation method for rolling element bearings. A simulated signal and two bearing fault signal from the train rolling element bearings show that the proposed method can well extract the bearing fault signal. Note that the proposed method can extract the periodic fault signal for bearing fault diagnosis. Thus, it should be helpful in the diagnosis of other rotating machinery, such as gears or blades.

Details

Smart and Resilient Transportation, vol. 3 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Available. Open Access. Open Access
Article
Publication date: 15 December 2020

Qiming Chen, Xinyi Fei, Lie Xie, Dongliu Li and Qibing Wang

1. To improve the causality analysis performance, a novel causality detector based on time-delayed convergent cross mapping (TD-CCM) is proposed in this work. 2. Identify the root…

979

Abstract

Purpose

1. To improve the causality analysis performance, a novel causality detector based on time-delayed convergent cross mapping (TD-CCM) is proposed in this work. 2. Identify the root cause of plant-wide oscillations in process control system.

Design/methodology/approach

A novel causality analysis framework is proposed based on denoising and periodicity-removing TD-CCM (time-delayed convergent cross mapping). We first point out that noise and periodicity have adverse effects on causality detection. Then, the empirical mode decomposition (EMD) and detrended fluctuation analysis (FDA) are combined to achieve denoising. The periodicities are effectively removed through singular spectrum analysis (SSA). Following, the TD-CCM can accurately capture the causalities and locate the root cause by analyzing the filtered signals.

Findings

1. A novel causality detector based on denoising and periodicity-removing time-delayed convergent cross mapping (TD-CCM) is proposed. 2. Simulation studies show that the proposed method is able to improve the causality analysis performance. 3. Industrial case study shows the proposed method can be used to analyze the root cause of plant-wide oscillations in process control system.

Originality/value

1. A novel causality detector based on denoising and periodicity-removing time-delayed convergent cross mapping (TD-CCM) is proposed. 2. The influences of noise and periodicity on causality analysis are investigated. 3. Simulations and industrial case shows that the proposed method can improve the causality analysis performance and can be used to identify the root cause of plant-wide oscillations in process control system.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Available. Open Access. Open Access
Article
Publication date: 24 September 2019

Jing Bai, Le Fan, Shuyang Zhang, Zengcui Wang and Xiansheng Qin

Both geometric and non-geometric parameters have noticeable influence on the absolute positional accuracy of 6-dof articulated industrial robot. This paper aims to enhance it and…

5893

Abstract

Purpose

Both geometric and non-geometric parameters have noticeable influence on the absolute positional accuracy of 6-dof articulated industrial robot. This paper aims to enhance it and improve the applicability in the field of flexible assembling processing and parts fabrication by developing a more practical parameter identification model.

Design/methodology/approach

The model is developed by considering both geometric parameters and joint stiffness; geometric parameters contain 27 parameters and the parallelism problem between axes 2 and 3 is involved by introducing a new parameter. The joint stiffness, as the non-geometric parameter considered in this paper, is considered by regarding the industrial robot as a rigid linkage and flexible joint model and adds six parameters. The model is formulated as the form of error via linearization.

Findings

The performance of the proposed model is validated by an experiment which is developed on KUKA KR500-3 robot. An experiment is implemented by measuring 20 positions in the work space of this robot, obtaining least-square solution of measured positions by the software MATLAB and comparing the result with the solution without considering joint stiffness. It illustrates that the identification model considering both joint stiffness and geometric parameters can modify the theoretical position of robots more accurately, where the error is within 0.5 mm in this case, and the volatility is also reduced.

Originality/value

A new parameter identification model is proposed and verified. According to the experimental result, the absolute positional accuracy can be remarkably enhanced and the stability of the results can be improved, which provide more accurate parameter identification for calibration and further application.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Available. Open Access. Open Access
Article
Publication date: 2 February 2023

Ming Chen and Lie Xie

The flexibility of batch process enables its wide application in fine-chemical, pharmaceutical and semi-conductor industries, whilst its complexity necessitates control…

404

Abstract

Purpose

The flexibility of batch process enables its wide application in fine-chemical, pharmaceutical and semi-conductor industries, whilst its complexity necessitates control performance monitoring to ensure high operation efficiency. This paper proposes a data-driven approach to carry out controller performance monitoring within batch based on linear quadratic Gaussian (LQG) method.

Design/methodology/approach

A linear time-varying LQG method is proposed to obtain the joint covariance benchmark for the stochastic part of batch process input/output. From historical golden operation batch, linear time-varying (LTV) system and noise models are identified based on generalized observer Markov parameters realization.

Findings

Open/closed loop input and output data are applied to identify the process model as well as the disturbance model, both in Markov parameter form. Then the optimal covariance of joint input and output can be obtained by the LQG method. The Hotelling's Tˆ2 control chart can be established to monitor the controller.

Originality/value

(1) An observer Markov parameter approach to identify the time-varying process and noise models from both open and closed loop data, (2) a linear time-varying LQG optimal control law to obtain the optimal benchmark covariance of joint input and output and (3) a joint input and output multivariate control chart based on Hotelling's T2 statistic for controller performance monitoring.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Available. Open Access. Open Access
Article
Publication date: 16 October 2024

Yang Li, Zhicheng Zheng, Yaochen Qin, Haifeng Tian, Zhixiang Xie and Peijun Rong

Drought is the primary disaster that negatively impacts agricultural and animal husbandry production. It can lead to crop reduction and even pose a threat to human survival in…

126

Abstract

Purpose

Drought is the primary disaster that negatively impacts agricultural and animal husbandry production. It can lead to crop reduction and even pose a threat to human survival in environmentally sensitive areas of China (ESAC). However, the phases and periodicity of drought changes in the ESAC remain largely unknown. Thus, this paper aims to identify the periodic characteristics of meteorological drought changes.

Design/methodology/approach

The potential evapotranspiration was calculated using the Penman–Monteith formula recommended by the Food and Agriculture Organization of the United Nations, whereas the standardized precipitation evaporation index (SPEI) of drought was simulated by coupling precipitation data. Subsequently, the Bernaola-Galvan segmentation algorithm was proposed to divide the periods of drought change and the newly developed extreme-point symmetric mode decomposition to analyze the periodic drought patterns.

Findings

The findings reveal a significant increase in SPEI in the ESAC, with the rate of decline in drought events higher in the ESAC than in China, indicating a more pronounced wetting trend in the study area. Spatially, the northeast region showed an evident drying trend, whereas the southwest region showed a wetting trend. Two abrupt changes in the drought pattern were observed during the study period, namely, in 1965 and 1983. The spatial instability of moderate or severe drought frequency and intensity on a seasonal scale was more consistent during 1966–1983 and 1984–2018, compared to 1961–1965. Drought variation was predominantly influenced by interannual oscillations, with the periods of the components of intrinsic mode functions 1 (IMF1) and 2 (IMF2) being 3.1 and 7.3 years, respectively. Their cumulative variance contribution rate reached 70.22%.

Research limitations/implications

The trend decomposition and periods of droughts in the study area were analyzed, which may provide an important scientific reference for water resource management and agricultural production activities in the ESAC. However, several problems remain unaddressed. First, the SPEI considers only precipitation and evapotranspiration, making it extremely sensitive to temperature increases. It also ignores the nonstationary nature of the hydrometeorological water process; therefore, it is prone to bias in drought detection and may overestimate the intensity and duration of droughts. Therefore, further studies on the application and comparison of various drought indices should be conducted to develop a more effective meteorological drought index. Second, the local water budget is mainly affected by surface evapotranspiration and precipitation. Evapotranspiration is calculated by various methods that provide different results. Therefore, future studies need to explore both the advantages and disadvantages of various evapotranspiration calculation methods (e.g. Hargreaves, Thornthwaite and Penman–Monteith) and their application scenarios. Third, this study focused on the temporal and spatial evolution and periodic characteristics of droughts, without considering the driving mechanisms behind them and their impact on the ecosystem. In future, it will be necessary to focus on a sensitivity analysis of drought indices with regard to climate change. Finally, although this study calculated the SPEI using meteorological data provided by China’s high-density observatory network, deviations and uncertainties were inevitable in the point-to-grid spatialization process. This shortcoming may be avoided by using satellite remote sensing data with high spatiotemporal resolution in the future, which can allow pixel-scale monitoring and simulation of meteorological drought evolution.

Practical implications

Under the background of continuous global warming, the climate in arid and semiarid areas of China has shown a trend of warming and wetting. It means that the plant environment in this region is getting better. In the future, the project of afforestation and returning farmland to forest and grassland in this region can increase the planting proportion of water-loving tree species to obtain better ecological benefits. Meanwhile, this study found that in the relatively water-scarce regions of China, drought duration was dominated by interannual oscillations (3.1a and 7.3a). This suggests that governments and nongovernmental organizations in the region should pay attention to the short drought period in the ESAC when they carry out ecological restoration and protection projects such as the construction of forest reserves and high-quality farmland.

Originality/value

The findings enhance the understanding of the phasic and periodic characteristics of drought changes in the ESAC. Future studies on the stress effects of drought on crop yield may consider these effects to better reflect the agricultural response to meteorological drought and thus effectively improve the tolerance of agricultural activities to drought events.

Details

International Journal of Climate Change Strategies and Management, vol. 17 no. 1
Type: Research Article
ISSN: 1756-8692

Keywords

Available. Open Access. Open Access
Article
Publication date: 19 May 2022

Feng Shi, Xian Tu and Shuo Zhao

Under the constraints of given passenger service level and coupling travel demand with train departure time, this study optimizes the train operational plan in an urban rail…

648

Abstract

Purpose

Under the constraints of given passenger service level and coupling travel demand with train departure time, this study optimizes the train operational plan in an urban rail corridor to minimize the numbers of train trips and rolling stocks considering the time-varying demand of urban rail passenger flow.

Design/methodology/approach

The authors optimize the train operational plan in a special network layout, i.e. an urban rail corridor with dead-end terminal yard, by decomposing it into two sub-problems: train timetable optimization and rolling stock circulation optimization. As for train timetable optimization, the authors propose a schedule-based passenger flow assignment method, construct the corresponding timetabling optimization model and design the bi-directional coordinated sequential optimization algorithm. For the optimization of rolling stock circulation, the authors construct the corresponding optimization assignment model and adopt the Hungary algorithm for solving the model.

Findings

The case study shows that the train operational plan developed by the study's approach meets requirements on the passenger service quality and reduces the operational cost to the maximum by minimizing the numbers of train trips and rolling stocks.

Originality/value

The example verifies the efficiency of the model and algorithm.

Available. Open Access. Open Access
Article
Publication date: 2 July 2018

Xuemei Li, Ya Zhang and Kedong Yin

The traditional grey relational models directly describe the behavioural characteristics of the systems based on the sample point connections. Few grey relational models can…

1081

Abstract

Purpose

The traditional grey relational models directly describe the behavioural characteristics of the systems based on the sample point connections. Few grey relational models can measure the dynamic periodic fluctuation rules of the objects, and most of these models do not have affinities, which results in instabilities of the relational results because of sequence translation. The paper aims to discuss these issues.

Design/methodology/approach

Fourier transform functions are used to fit the system behaviour curves, redefine the area difference between the curves and construct a grey relational model based on discrete Fourier transform (DFTGRA).

Findings

To verify its validity, feasibility and superiority, DFTGRA is applied to research on the correlation between macroeconomic growth and marine economic growth in China coastal areas. It is proved that DFTGRA has the superior properties of affinity, symmetry, uniqueness, etc., and wide applicability.

Originality/value

DFTGRA can not only be applied to equidistant and equal time sequences but also be adopted for non-equidistant and unequal time sequences. DFTGRA can measure both the global relational degree and the dynamic correlation of the variable cyclical fluctuation between sequences.

Details

Marine Economics and Management, vol. 1 no. 1
Type: Research Article
ISSN: 2516-158X

Keywords

1 – 10 of 480
Per page
102050