Search results

1 – 10 of 640
Open Access
Article
Publication date: 26 October 2018

Lin Shao

The paper aims to provide a comprehensive investigation of the relationship between corporate governance (CG) structure and firm performance in Chinese listed firms from 2001 to…

11007

Abstract

Purpose

The paper aims to provide a comprehensive investigation of the relationship between corporate governance (CG) structure and firm performance in Chinese listed firms from 2001 to 2015. The authors’ motivation derives from the fact that the CG system in China is different from those in the US, the UK, Germany, Japan and other countries.

Design/methodology/approach

A large unbalanced sample, covering more than 22,700 observations in Chinese listed firms, was used to explore, by means of a system-generalized method-of-moments (GMM) estimator, the relationship between CG structure and firm performance to remove potential sources of endogeneity.

Findings

Results show that Chinese CG structure is endogenously determined by the CG mechanisms investigated: there is no relationship between board size (including independent directors) and firm performance; CEO duality has a significantly negative effect on firm performance; concentration of ownership has a significantly positive influence on firm performance; managerial ownership is negatively correlated with firm performance; state ownership has a significantly positive effect on firm performance; and a supervisory board is positively correlated with firm performance.

Practical implications

The findings provide policymakers and firm managers with useful empirical guidance concerning CG in China.

Originality/value

Few integrative studies have examined the impact of CG structure on firm performance in China. This study adds new empirical evidence that the relation between CG structure and performance in China is endogenous and dynamic when controlling for unobserved heterogeneity, simultaneity, and dynamic endogeneity.

Details

Chinese Management Studies, vol. 13 no. 2
Type: Research Article
ISSN: 1750-614X

Keywords

Open Access
Article
Publication date: 2 July 2024

Qingyun Fu, Shuxin Ding, Tao Zhang, Rongsheng Wang, Ping Hu and Cunlai Pu

To optimize train operations, dispatchers currently rely on experience for quick adjustments when delays occur. However, delay predictions often involve imprecise shifts based on…

Abstract

Purpose

To optimize train operations, dispatchers currently rely on experience for quick adjustments when delays occur. However, delay predictions often involve imprecise shifts based on known delay times. Real-time and accurate train delay predictions, facilitated by data-driven neural network models, can significantly reduce dispatcher stress and improve adjustment plans. Leveraging current train operation data, these models enable swift and precise predictions, addressing challenges posed by train delays in high-speed rail networks during unforeseen events.

Design/methodology/approach

This paper proposes CBLA-net, a neural network architecture for predicting late arrival times. It combines CNN, Bi-LSTM, and attention mechanisms to extract features, handle time series data, and enhance information utilization. Trained on operational data from the Beijing-Tianjin line, it predicts the late arrival time of a target train at the next station using multidimensional input data from the target and preceding trains.

Findings

This study evaluates our model's predictive performance using two data approaches: one considering full data and another focusing only on late arrivals. Results show precise and rapid predictions. Training with full data achieves a MAE of approximately 0.54 minutes and a RMSE of 0.65 minutes, surpassing the model trained solely on delay data (MAE: is about 1.02 min, RMSE: is about 1.52 min). Despite superior overall performance with full data, the model excels at predicting delays exceeding 15 minutes when trained exclusively on late arrivals. For enhanced adaptability to real-world train operations, training with full data is recommended.

Originality/value

This paper introduces a novel neural network model, CBLA-net, for predicting train delay times. It innovatively compares and analyzes the model's performance using both full data and delay data formats. Additionally, the evaluation of the network's predictive capabilities considers different scenarios, providing a comprehensive demonstration of the model's predictive performance.

Open Access
Article
Publication date: 13 June 2024

E.P. Femina and P. Santhi

The research aims to examine the influence of perceived value (PV) dimensions on brand loyalty of luxury car owners and to examine the mediating role of attitudinal loyalty (AL…

1054

Abstract

Purpose

The research aims to examine the influence of perceived value (PV) dimensions on brand loyalty of luxury car owners and to examine the mediating role of attitudinal loyalty (AL) between PV dimensions and behavioral loyalty (BL).

Design/methodology/approach

Primary data for the study were gathered from the luxury car owners in Kerala, India. The construct measurements have been adopted from previous research studies. Structural equation modeling with the partial least square (PLS) technique was used to analyze the measurements and conceptual model.

Findings

The findings show that out of four PV dimensions among luxury car owners, the hedonic value (HV) significantly influences their AL. Economic value influences BL, and social values have an impact on AL as well as BL, but the relationship of functional value with any is not supported by the results. AL is a strong predictor of BL, and it actively mediates the relationship of HV and symbolic value with BL.

Practical implications

The manufactures of luxury cars provide more importance to hedonic and symbolic elements while launching new models and consider the price perceptions of the targeted customers while making decisions related to brand attachment and brand loyalty.

Originality/value

This study contributes to the decision-making of the rapidly growing vehicle market by examining the perceptions and by providing the effects of perceived values among luxury car owners. Also, it extends the literature by developing a framework for PV dimensions on AL and BL and also incorporated the mediating role of AL.

Details

Rajagiri Management Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0972-9968

Keywords

Open Access
Article
Publication date: 24 November 2022

Mandakini Paruthi, Harsandaldeep Kaur, Jamid Ul Islam, Aaleya Rasool and George Thomas

This study aims to investigate the influence of brand relationship quality and consumer community identification on consumer engagement. This study also examines the mediating…

7285

Abstract

Purpose

This study aims to investigate the influence of brand relationship quality and consumer community identification on consumer engagement. This study also examines the mediating role of consumer engagement between brand relationship quality and consumer community identification with brand love. Positive word of mouth is taken as an outcome variable.

Design/methodology/approach

To test the proposed relationships, data were collected from 580 social media-based brand community followers and analysed through structural equation modelling.

Findings

Results corroborate brand relationship quality and consumer community identification as critical drivers of consumer engagement on the online platforms. The results further reveal a positive association between consumer engagement and brand love which consequently foster positive word of mouth. The findings also corroborate the partial as well as full mediating role of consumer engagement on different proposed associations.

Originality/value

This study offers an in-depth insight of specific motivations to engage consumers in the virtual domain, make them adore their brands and spread a positive word. All of these outcomes are crucial in offering competitive advantages to firms. This study validates the relevance of consumer engagement interactions in contemporary firms’ relationship marketing strategies.

Open Access
Article
Publication date: 27 August 2024

Talshyn Tokyzhanova and Susanne Durst

The purpose of this systematic literature review (SLR) is to examine the theoretical landscape of knowledge hiding (KH) research, identifies prevailing theories, the different…

Abstract

Purpose

The purpose of this systematic literature review (SLR) is to examine the theoretical landscape of knowledge hiding (KH) research, identifies prevailing theories, the different ways KH is understood within these theories and the underlying assumptions that shape these views. Based on this, ideas for further research are derived to advance the theoretical basis of KH studies.

Design/methodology/approach

Using a theory-based SLR, the authors analysed 170 scientific papers from Scopus and Web of Science. This involved thematic analysis to categorise theories frequently applied in KH research and a detailed examination to link core assumptions to these theoretical perspectives.

Findings

The analysis revealed a reliance on 86 distinct theories, with a notable emphasis on social exchange theory and conservation of resources theory. KH is predominantly conceptualised as a negative, objective, reactive and relational behaviour rooted in social reciprocity and resource conservation. The review uncovers the multifaceted nature of KH, challenging the field to incorporate broader theoretical views that encompass positive aspects, subjective experiences, strategic intentions and non-relational determinants of KH.

Originality/value

To the best of the authors’ knowledge, this is the first study to systematically map and analyse the theoretical underpinnings of KH research. It offers a unique contribution by categorising the diverse theories applied in KH studies and explicitly linking these theories to their inherent assumptions about KH. This approach provides a comprehensive overview that not only identifies gaps in the current research landscape but also proposes alternative theoretical perspectives for exploring KH, thereby setting a new direction for future studies in this field.

Details

VINE Journal of Information and Knowledge Management Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2059-5891

Keywords

Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 5 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 17 September 2020

Tao Peng, Xingliang Liu, Rui Fang, Ronghui Zhang, Yanwei Pang, Tao Wang and Yike Tong

This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.

1815

Abstract

Purpose

This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.

Design/methodology/approach

The authors proposed a novel safety lane-change path planning and tracking control method for articulated vehicles. A double-Gaussian distribution was introduced to deduce the lane-change trajectories of tractor and trailer coupling characteristics of intelligent vehicles and roads. With different steering and braking maneuvers, minimum safe distances were modeled and calculated. Considering safety and ergonomics, the authors invested multilevel self-driving modes that serve as the basis of decision-making for vehicle lane-change. Furthermore, a combined controller was designed by feedback linearization and single-point preview optimization to ensure the path tracking and robust stability. Specialized hardware in the loop simulation platform was built to verify the effectiveness of the designed method.

Findings

The numerical simulation results demonstrated the path-planning model feasibility and controller-combined decision mechanism effectiveness to self-driving trucks. The proposed trajectory model could provide safety lane-change path planning, and the designed controller could ensure good tracking and robust stability for the closed-loop nonlinear system.

Originality/value

This is a fundamental research of intelligent local path planning and automatic control for articulated vehicles. There are two main contributions: the first is a more quantifiable trajectory model for self-driving articulated vehicles, which provides the opportunity to adapt vehicle and scene changes. The second involves designing a feedback linearization controller, combined with a multi-objective decision-making mode, to improve the comprehensive performance of intelligent vehicles. This study provides a valuable reference to develop advanced driving assistant system and intelligent control systems for self-driving articulated vehicles.

Details

Journal of Intelligent and Connected Vehicles, vol. 3 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 26 July 2024

Sandy Harianto and Janto Haman

The purpose of our study is to investigate the effects of politically-connected boards (PCBs) on over-(under-)investment in labor. We also examine the impacts of the supervisory…

Abstract

Purpose

The purpose of our study is to investigate the effects of politically-connected boards (PCBs) on over-(under-)investment in labor. We also examine the impacts of the supervisory board (SB)’s optimal tenure on the association between PCBs and over-investment in labor.

Design/methodology/approach

We constructed the proxy for PCBs using a dummy variable set to 1 (one) if a firm has politically-connected boards and zero (0) otherwise. For the robustness check, we used the number of politically-connected members on the boards as the proxy for PCBs.

Findings

We find that the presence of PCBs reduces over-investment in labor. Consistent with our prediction, we found no significant association between PCBs and under-investment in labor. We also find that the SB with optimal tenure strengthens the negative association between PCBs and over-investment in labor. In our channel analysis, we find that the presence of PCB mitigates over-investment in labor through a higher dividend payout ratio.

Research limitations/implications

Due to the unavailability of data in firms’ annual reports regarding the number of poorly-skilled and highly skilled employees, we were not able to examine the effect of low-skilled and high-skilled employees on over-investment in labor. Also, we were not able to examine over-(under-)investment in labor by drawing a distinction between general (generalist) and firm-specific human capital (specialist) as suggested by Sevcenko, Wu, and Kacperczyk (2022). Generally, it is more difficult for managers to hire highly-skilled employees, specialists in particular, thereby driving the choice of either over- or under-investing in the labor forces. In addition, in the firms’ annual reports, there is no information regarding temporary employees. Therefore, if and when such data become available, this would provide another avenue for future research.

Practical implications

Our study offers several practical implications and insights to stakeholders (e.g. insiders or management, shareholders, investors, analysts and creditors) in the following ways. First, our study highlights significant differences between capital investment and labor investment. For instance, labor investment is considered an expense rather than an asset (Wyatt, 2008) because, although such investment is human capital and is not recognized on the firm’s balance sheet (Boon et al., 2017). In addition, labor investment is characterized by: its flexibility which enables firms to make frequent adjustments (Hamermesh, 1995; Dixit & Pindyck, 2012; Aksin et al., 2015), its non-homogeneity since every employee is unique (Luo et al., 2020), its direct impact on morale and productivity of a firm (Azadegan et al., 2013; Mishina et al., 2004; Tatikonda et al., 2013), and its financial outlay which affects the ongoing cash flows of a firm (Sualihu et al., 2021; Khedmati et al., 2020; Merz & Yashiv, 2007). Second, our findings reveal that the presence of PCBs could help to reduce over-investment in labor. However, if managers of a firm choose to under-invest in labor in order to obtain better profit in the short-term through cost saving, they should be aware of the potential consequences of facing a financial loss when a new business opportunity suddenly arises which requires a larger labor force. Third, our findings help stakeholders to re-focus on the labor investment. This is crucial due to the fact that labor investment is often neglected by those stakeholders because the expenditure of labor investment is not recognized on the firm’s balance sheet as an asset. Instead, it is written off as an expense in the firm’s income statement. Fourth, our findings also provide insightful information to stakeholders, suggesting that an SB with optimal tenure is more committed to a firm, and this factor plays an important role in strengthening the negative association between PCBs and over-investment in labor.

Social implications

First, our findings provide a valuable understanding of the effects of PCBs on over-(under-)investment in labor. Stakeholders could use information disclosed in the financial statements of a publicly-listed firm to determine the extent of the firm’s investment in labor and PCBs, and compare this information with similar firms in the same industry sector. Second, our findings give a better understanding of the association between investment in labor and political connections , which are human and social capital that could determine the long-term survival and success of a firm. Third, for shareholders, the appointment of board members with political connections is an important strategic decision to build political capital, which is likely to have a long-term impact on the financial performance of a firm; therefore, it requires thoughtful consultation with firm insiders.

Originality/value

Our findings highlight the role of PCBs in reducing over-investment in labor. These findings are significant because both investment in labor and political connections as human and social capital can play an important role in determining the long-term survival and success of a firm.

Details

China Accounting and Finance Review, vol. 26 no. 5
Type: Research Article
ISSN: 1029-807X

Keywords

Open Access
Article
Publication date: 6 March 2023

Qiang Yang, Jiale Huo, Hongxiu Li, Yue Xi and Yong Liu

This study investigates how social interaction-oriented content in broadcasters' live speech affects broadcast viewers' purchasing and gift-giving behaviors and how broadcaster…

9741

Abstract

Purpose

This study investigates how social interaction-oriented content in broadcasters' live speech affects broadcast viewers' purchasing and gift-giving behaviors and how broadcaster popularity moderates social interaction-oriented content's effect on the two different behaviors in live-streaming commerce.

Design/methodology/approach

A research model was proposed and empirically tested using a panel data set collected from 537 live streams via Douyin (the Chinese version of TikTok), one of the most popular live broadcast platforms in China. A fixed-effects negative binomial regression model was used to examine the proposed research model.

Findings

This study's results show that social interaction-oriented content in broadcasters' live speech has an inverted U-shaped relationship with broadcast viewers' purchasing behavior and shares a positive linear relationship with viewers' gift-giving behavior. Furthermore, broadcaster popularity significantly moderates the effect of social interaction-oriented content on viewers' purchasing and gift-giving behaviors.

Originality/value

This research enriches the literature on live-streaming commerce by investigating how social interaction-oriented content in broadcasters' live speech affects broadcast viewers' product-purchasing and gift-giving behaviors from the perspective of broadcast viewers' attention. Moreover, this study provides some practical guidelines for developing live speech content in the live-streaming commerce context.

Details

Internet Research, vol. 33 no. 7
Type: Research Article
ISSN: 1066-2243

Keywords

Open Access
Article
Publication date: 6 October 2023

Xiaomei Jiang, Shuo Wang, Wenjian Liu and Yun Yang

Traditional Chinese medicine (TCM) prescriptions have always relied on the experience of TCM doctors, and machine learning(ML) provides a technical means for learning these…

Abstract

Purpose

Traditional Chinese medicine (TCM) prescriptions have always relied on the experience of TCM doctors, and machine learning(ML) provides a technical means for learning these experiences and intelligently assists in prescribing. However, in TCM prescription, there are the main (Jun) herb and the auxiliary (Chen, Zuo and Shi) herb collocations. In a prescription, the types of auxiliary herbs are often more than the main herb and the auxiliary herbs often appear in other prescriptions. This leads to different frequencies of different herbs in prescriptions, namely, imbalanced labels (herbs). As a result, the existing ML algorithms are biased, and it is difficult to predict the main herb with less frequency in the actual prediction and poor performance. In order to solve the impact of this problem, this paper proposes a framework for multi-label traditional Chinese medicine (ML-TCM) based on multi-label resampling.

Design/methodology/approach

In this work, a multi-label learning framework is proposed that adopts and compares the multi-label random resampling (MLROS), multi-label synthesized resampling (MLSMOTE) and multi-label synthesized resampling based on local label imbalance (MLSOL), three multi-label oversampling techniques to rebalance the TCM data.

Findings

The experimental results show that after resampling, the less frequent but important herbs can be predicted more accurately. The MLSOL method is shown to be the best with over 10% improvements on average because it balances the data by considering both features and labels when resampling.

Originality/value

The authors first systematically analyzed the label imbalance problem of different sampling methods in the field of TCM and provide a solution. And through the experimental results analysis, the authors proved the feasibility of this method, which can improve the performance by 10%−30% compared with the state-of-the-art methods.

Details

Journal of Electronic Business & Digital Economics, vol. 2 no. 2
Type: Research Article
ISSN: 2754-4214

Keywords

1 – 10 of 640