Satish C. Sharma, Vikas M. Phalle and S.C. Jain
Noncircular journal bearings are used in industry because of their simplicity, efficiency and low cost. During the life time of a machine, these are required to be operated over a…
Abstract
Purpose
Noncircular journal bearings are used in industry because of their simplicity, efficiency and low cost. During the life time of a machine, these are required to be operated over a number of years and are submitted to several stops and starts. As a result, the bush becomes progressively worn out and the bearing performance changes. The purpose of this paper is to study theoretically the influence of wear on the performance of a non‐circular 2‐lobe four‐pocket multirecess hybrid journal bearing system.
Design/methodology/approach
The Reynolds equation governing the flow of lubricant in the clearance space of a non‐circular 2‐lobe multirecess worn hybrid journal bearing system has been solved using FEM along with appropriate boundary conditions. The defects caused by wear are centered on the load line and range from 10 per cent to 50 per cent of the bearing radial clearance.
Findings
The numerically simulated results based on a Newtonian lubricant and the steady state flow field system have been presented in terms of maximum fluid film pressure, minimum fluid film thickness, lubricant flow rate, direct fluid film stiffness and damping coefficients and stability threshold speed margin. The paper demonstrates that, for the bearing configurations studied, the bearing behavior is clearly affected by wear. The numerically simulated results indicate that for an offset factor of δ=1.2, the value of h¯min reduces by 21.21 per cent at δ¯w=0.5.
Originality/value
The presented results have valuable data in case of 2‐lobe four pocket hybrid journal bearing compensated with constant flow valve restrictor. The paper outcomes are sure to be of interest for researchers and useful for bearing designers.
Details
Keywords
Satish Jain, Satish Sharma, J. Sharana Basavaraja and Prashant Kushare
In recent years, researchers have focused a great deal of attention on multirecess hybrid journal bearing systems. The non‐circular journal bearings are widely used in industry on…
Abstract
Purpose
In recent years, researchers have focused a great deal of attention on multirecess hybrid journal bearing systems. The non‐circular journal bearings are widely used in industry on account of their better stability, simplicity, efficiency and low cost. The purpose of this paper is to present a theoretical investigation into the performance of a two‐lobe multirecess hybrid journal bearing system.
Design/methodology/approach
The Reynold's equation governing the lubricant flow in the clearance space between the journal and bearing together with restrictor flow equations has been solved using finite element method. The bearing static and dynamic performance characteristics have been presented for the various values of the offset factors (0.75, 1, 1.25 and 1.50) for the hybrid mode of operation of the journal bearing system compensated by capillary and orifice restrictors for the commonly used bearing operating and geometric parameters. The offset of the journal has been accounted for by defining a non‐dimensional factor called offset factor delta.
Findings
The numerically simulated results indicate that a two‐lobe four recessed hybrid journal bearing provides a better performance than the corresponding similar circular recessed journal bearing system. The study further reveals that in order to get an improved performance of a two‐lobe four recessed journal bearing, a proper selection of bearing offset factors along with type of restrictor (capillary or orifice) is essential.
Originality/value
The results presented in this paper are useful for bearing designers.
Details
Keywords
Rajneesh Kumar and Suresh Verma
In the present scenario of high-speed machines, the use of non-circular hole-entry bearing configuration, i.e. two-lobe, multi-lobe, lemon bore, etc., has becomes unavoidable, as…
Abstract
Purpose
In the present scenario of high-speed machines, the use of non-circular hole-entry bearing configuration, i.e. two-lobe, multi-lobe, lemon bore, etc., has becomes unavoidable, as the journal bearings with non-circular configurations provide better stability at high operating speed and heavy dynamic loading. Further, this research aims to show that the presence of micro particles in the lubricants greatly affects performance of the bearings, as their presence leads to non-Newtonian behaviors of the lubricant. Therefore, to consider the effect of these micro particles, the lubricant is modeled as a micropolar lubricant. The present work analyzes the effect of these micropolar lubricants on the performance of hole-entry circular and non-circular (two-lobe) hybrid journal bearings compensated with constant flow valve restrictor and compares with that of Newtonian lubricants.
Design/methodology/approach
The modified Reynolds equation governing the laminar flow of iso-viscous, incompressible micropolar lubricant in the clearance space of a journal bearing system has been solved using finite element method and appropriate boundary conditions. Further, a comparative analysis between circular and non-circular (two-lobe) hybrid journal bearing compensated with constant flow valve restrictor operating with Newtonian and micropolar lubricant has been presented.
Findings
The numerically simulated results reveal that the non-circular bearing configuration provides better performance vis-à-vis the circular bearing configuration. Further, the increase in the micropolar effect of the lubricant enhances the performance of circular and the non-circular bearing configurations compared with the Newtonian lubricant. Also, in the case of the non-circular bearing configuration with an offset factor (δ = 1.5), the bearing performance improved compared with (δ = 1.25).
Originality/value
Many research studies have been done in the area of non-circular hybrid journal bearing with Newtonian lubricants with different types of restrictors, but the non-circular hole-entry constant flow valve-compensated hybrid journal bearing operating with the micropolar lubricant has not been analyzed. Therefore, in the present work, an effort has been made to fill this research gap.
Details
Keywords
Shun-Te Hsiao, Yuan Kang, Shyh-Ming Jong, Hsing-Han Lee, De-Xing Peng and Yeon-Pun Chang
This paper aims to study the static characteristics of the hydrostatic conical journal bearings by utilizing single-action membrane restrictors to compensate the working pressures…
Abstract
Purpose
This paper aims to study the static characteristics of the hydrostatic conical journal bearings by utilizing single-action membrane restrictors to compensate the working pressures of recesses.
Design/methodology/approach
The flow resistance network method is used to analyze the influences of load capacity and static stiffness of bearing with the design parameters, including the number of recesses, radial eccentricity ratio, axial displacement ratio, restriction constant, membrane compliance, length-diameter ratio, circumferential land width ratio, axial land width ratio and half of cone angle.
Findings
This study shows the infinite stiffness of the oil produced in the first and second recesses while single-action membrane restriction constant of 2 and 3, respectively, as well as in the fourth recess while single-action membrane restriction constant of 0.01 and 0.1, respectively.
Research limitations/implications
This article provides the hydrostatic conical bearings in static and unbiased states for analyses of design parameters. The analyses ignore dynamic pressure effect and do not use the Reynolds equation, and assuming that each oil recesses pressure is constant.
Practical implications
The influences of the design parameters including the number of recesses, membrane restriction, membrane compliance, length-diameter ratio, half of con-angle, circumferential land width ratio, and axial land width ratio are discussed to the load capacity and static stiffness of conical bearing.
Originality/value
Based on the characteristics of the conical bearing through analysis, this article suggests the front bearing with hard membrane restrictor (capillary) and the back bearing with soft membrane restrictor are the most appropriate for axial stiffness.
Details
Keywords
H.C. Garg, Vijay Kumar and H.B. Sharda
Every high speed machine, demanding high level of perfection, can operate successfully through a precise design of bearings. Such a design can be formulated after carefully…
Abstract
Purpose
Every high speed machine, demanding high level of perfection, can operate successfully through a precise design of bearings. Such a design can be formulated after carefully studying both static and dynamic characteristics of the journal bearing. The present paper aims to describe the study of static and dynamic performance of a hole‐entry hybrid journal bearing system compensated with capillary restrictor by considering the combined influence of thermal effects and non‐Newtonian behavior of the lubricant.
Design/methodology/approach
The variation of the viscosity due to the non‐Newtonian behavior of the lubricant and temperature rise is considered in the study. The numerical solution of the generalized Reynold's, equation governing the flow of the lubricant having variable viscosity along with the energy and heat conduction equations is obtained using finite element method. The non‐Newtonian lubricant has been assumed to follow the cubic shear stress law. The study includes performance of a double row symmetric hole entry hybrid journal bearing configuration containing 12 holes per row.
Findings
The results indicate that change in viscosity of lubricant affects the bearing design parameters.
Originality/value
The paper shows that accurate theoretical modeling of the bearing is an effective tool for the selection of design parameter such as bearing land width ratio (ab), restrictor design parameter (Cs2), and non‐linearity factor (K).
Details
Keywords
H.C. Garg and Vijay Kumar
This paper aims to investigate the effect of plugging of holes on the static performance characteristics of a constant flow valve compensated hole‐entry hybrid journal bearing…
Abstract
Purpose
This paper aims to investigate the effect of plugging of holes on the static performance characteristics of a constant flow valve compensated hole‐entry hybrid journal bearing system operating with Newtonian and non‐Newtonian lubricants. The analysis considers the generalized Reynolds equation governing the flow of lubricant having variable viscosity in the clearance space and equation of flow of lubricant through constant flow valve restrictor. The non‐Newtonian lubricant is assumed to follow the power law. The performance characteristics are computed for the two values of power law index (n=1.0 and 0.566). The computed results indicate that the blockage of holes during operation will not be the likely causes for the imminent failure of a well‐designed non‐recessed hole‐entry hybrid journal bearing.
Design/methodology/approach
Finite element method has been used to solve generalized Reynolds equation governing the flow of lubricant having variable viscosity in the clearance space and equation of flow of lubricant through constant flow valve restrictor.
Findings
The computed results indicate that the blockage of holes during operation will not be the likely causes for the imminent failure of a well‐designed non‐recessed hole‐entry hybrid journal bearing. The bearing configuration with plugged holes provides sufficient fluid film thickness and low power requirement as less lubricant is required to be pumped in the bearing.
Originality/value
To the best of the author's knowledge, no study which considers the influence of plugging of holes on the static performance characteristics of a constant flow valve compensated hole‐entry hybrid journal bearing system operating with Newtonian and non‐Newtonian lubricant is yet available in the literature.
Details
Keywords
This paper aims to describe the theoretical study concerning the effect of non‐linear behavior of the lubricant on the performance of symmetric constant flow valve compensated…
Abstract
Purpose
This paper aims to describe the theoretical study concerning the effect of non‐linear behavior of the lubricant on the performance of symmetric constant flow valve compensated hole‐entry hybrid journal bearing. The bearing performance characteristics have been computed for various values of non‐linearity factor, land width ratio, aspect ratio and external load.
Design/methodology/approach
The analysis considers the generalized Reynolds equation governing the flow of lubricant having variable viscosity in the clearance space and equation of flow of lubricant through constant flow valve restrictor. The non‐Newtonian lubricant is assumed to follow the cubic shear stress law.
Findings
The study indicates that for generation of accurate bearing characteristics data, the inclusion of non‐linear effects of lubricant in the analysis is essential.
Originality/value
The performance characteristics in terms of minimum fluid‐film thickness, fluid‐film stiffness and damping coefficients, critical mass and threshold speed for a wide range of values of the non‐linearity factor and external load are presented. The results presented are expected to be quite useful to bearing designers.
Details
Keywords
Kuldeep Narwat, Vivek Kumar, Simran Jeet Singh and Abhishek Kumar
An electrorheological (ER) fluid consists of dielectric particles blended in a nonconducting oil. ER lubricants are often considered smart lubricants. This paper aims to examine…
Abstract
Purpose
An electrorheological (ER) fluid consists of dielectric particles blended in a nonconducting oil. ER lubricants are often considered smart lubricants. This paper aims to examine the steady state and dynamic response of multilobe journal bearings using an ER lubricant.
Design/methodology/approach
Reynold’s equation has been used to describe the lubricant flow in the journal-bearing clearance space. The Bingham model is used to characterize the nonlinear behavior of the lubricant. The solution of the Reynolds equation is obtained using the Newton–Raphson method, with gaseous cavitation in the fluid film numerically addressed by applying a mass-conserving algorithm. The effects of lobe geometry and the applied electric field are investigated on film pressure profile, fluid film thickness, direct stiffness and damping parameters. The equation of motion for journal center coordinates is solved using the fourth-order Runge–Kutta method, to predict journal center motion trajectories.
Findings
Using ER lubricant combined with two-lobe journal bearing significantly improved the minimum film thickness by 49.75%, the direct stiffness parameter by 132.18% and the damping parameter by 206.3%. However, the multilobe configuration was found to negatively impact the frictional powerloss of the bearing system. In the case of multilobe configurations of journal bearings using ER lubricant, linear motion journal trajectories are observed to be reduced and exhibit increased stability.
Originality/value
This study presents the effect of an ER lubricant and multilobe configuration on the rotor-dynamic performance and stability analysis of hydrodynamic journal bearings.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2024-0201/
Details
Keywords
Amina Nemchi, Ahmed Bouzidane, Aboubakeur Benariba and Hicham Aboshighiba
The purpose of this paper is to study the influence of different flow regimes on the dynamic characteristics of four-pad hydrostatic squeeze film dampers (SFDs) loaded between…
Abstract
Purpose
The purpose of this paper is to study the influence of different flow regimes on the dynamic characteristics of four-pad hydrostatic squeeze film dampers (SFDs) loaded between pads.
Design/methodology/approach
A numerical model based on Constantinescu’s turbulent lubrication theory using the finite difference method has been developed and presented to study the effect of eccentricity ratio on the performance characteristics of four-pad hydrostatic SFDs under different flow regimes.
Findings
It was found that the influence of turbulent flow on the dimensionless damping of four-pad hydrostatic SFDs appears to be essentially controlled by the eccentricity ratio. It was also found that the laminar flow presents higher values of load capacity compared to bearings operating under turbulent flow conditions.
Originality/value
In fact, the results obtained show that the journal bearing performances are significantly influenced by the turbulent flow regime. The study is expected to be useful to bearing designers.
Details
Keywords
Cheng‐Hsien Chen, Yeon‐Pun Chang, Hsing‐Han Lee, Yea‐Ping Wang and Yuan Kang
The present paper proposes a theoretical analysis of the stability characteristics of a rigid rotor‐hybrid bearing system. It is intended that on the basis of the numerical…
Abstract
Purpose
The present paper proposes a theoretical analysis of the stability characteristics of a rigid rotor‐hybrid bearing system. It is intended that on the basis of the numerical results drawn from this study, the optimal restriction parameter for stable operation can be determined for use in the bearing design process.
Design/methodology/approach
A rigid rotor supported by hybrid oil film bearings with six recesses and capillary‐compensated restrictors is studied. In order to facilitate the calculation of film dynamics, using the perturbation method, the Reynolds equation was linearized and subsequently solved using finite difference techniques, whilst the stability maps were determined by the Routh‐Hurwitz method.
Findings
The data reported here suggest that the stability characteristics of the rigid rotor‐bearing system could be improved by the use of shallow, dual‐recessed hybrid bearings with capillary compensation. For the same restriction parameter and the same land‐width ratio used in large eccentricity case the stability characteristics of a shallow‐recessed bearing is superior to that of a deep‐recessed bearing, however, a deep‐recessed bearing with a small land‐width ratio and a small restriction parameter can provide better stability than a shallow‐recessed bearing with a large land‐width ratio or with a large restriction parameter.
Originality/value
This study proposes an extensive database as a critical requirement in the design of hybrid bearings, in order to ensure that a rotor bearing system is operating stably.