Search results

1 – 1 of 1
Article
Publication date: 8 August 2024

QingYuan Zhou, Yangting Sun, Xiangyu Wang, Xin Tan, Yiming Jiang and Jin Li

This study aims to assess the pitting resistance of austenitic stainless steel welded joints fusion zone (FZ) with high density of inclusions before and after surface treatment…

Abstract

Purpose

This study aims to assess the pitting resistance of austenitic stainless steel welded joints fusion zone (FZ) with high density of inclusions before and after surface treatment, including potentiostatic pulse technique (PPT) and pickling.

Design/methodology/approach

The potentiodynamic polarization tests and critical pitting temperature tests were carried out for estimating pitting resistance. The PPT and pickling were performed as surface treatment. Scanning electron microscope (SEM) and energy dispersive spectrometer were used for characterize the microstructure and elemental distribution. Electron back-scattered diffraction (EBSD) was used to assess the portion of phases and morphology of grains.

Findings

The weld metal exhibits a higher degree of alloying compared to the base metal, and it contains d-phase and sulfur-containing inclusions. Sulfur-containing inclusions serve as initiation sites for pitting, and they diminish the pitting resistance of weld metal. Both PPT and pickling can remove sulfur-containing inclusions, but PPT causes localized dissolution of the weld metal matrix around the inclusions, while pickling does not. Because of the high density of inclusions, certain pits initiated by PPT are significantly deeper, which makes the formation of stable pitting easier. Because of the high density of inclusions, certain pits initiated by the PPT are deeper. This characteristic facilitates the progression of these initial defects into fully developed, stable pits.

Originality/value

Analysis of pitting initiation in shielded metal arc welding FZ with PPT and ex situ SEM tracking observation. Explanation of why the PPT surface treatment is not able to enhance the pitting resistance of stainless steel with a high inclusion density.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Access

Year

Last month (1)

Content type

1 – 1 of 1