Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 22 October 2024

Yingying Chi, Lianghua Chen, Yufei Hu, Yafei Zu, Xue Peng and Jinpei Liu

Green technology, characterized by its environmentally friendly attributes and sustainable practices, has emerged as a crucial tool in harmonizing the economic and ecological…

14

Abstract

Purpose

Green technology, characterized by its environmentally friendly attributes and sustainable practices, has emerged as a crucial tool in harmonizing the economic and ecological benefits. However, the challenge lies in selecting the most effective strategies for acquiring green technology. This paper aims to explore how chemical enterprises choose green technology acquisition strategies across diverse scenarios.

Design/methodology/approach

Considering the influence of competition effects, spillover effects and their interactions on selecting green technology acquisition strategies, this paper develops three decision models (independent R&D, cooperative R&D and technology introduction). Drawing on the duopoly game theory as its theoretical framework, this paper delves into the examination of the economic and environmental benefits within distinct scenarios.

Findings

Cooperative R&D excels in promoting green technology R&D when spillover effects are strong, while independent R&D demonstrates superiority when spillover effects are weak. The threshold for the strength of spillover effects is related to competition effects. Additionally, cooperative R&D typically yields greater financial advantages than independent R&D and technology introduction. Moreover, the economic and environmental benefits may not be optimized simultaneously. Only enterprises that satisfy low competition and spillover effects as well as high competition and spillover effects, can achieve win-win economic and environmental benefits.

Originality/value

Although green technology R&D and introduction are alternative strategies, they have typically been considered separately in prior literature. This study attempts to incorporate green technology R&D and introduction into a strategic system to investigate the selection of green technology acquisition strategies, taking into account competition effects, spillover effects and their interactions.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Access Restricted. View access options

Abstract

Graphical abstract

Purpose

The theme park industry has attracted wide attention and visitors’ perceptions are key to improving theme park management. Applying the cognitive-affective theory, this study aims to explore various cognitive attributes and affective attitudes and how they affect the overall theme park image.

Design/methodology/approach

A mixed research method was used to analyze tourists’ cognitive, affective and overall evaluations of theme parks through text mining and logistic regression and to verify their internal relationships.

Findings

Study 1 confirms the impact of six features of theme parks, including food and beverage consumption, merchandising, spatiality, immersive technologies, interactive performances and thematization. Study 2 reveals that finer-grained emotions such as goodness, sadness, disgust, surprise, fear, joy and anger are present in visitor reviews. Study 3 confirms the significant influence of cognitive characteristics and emotions related to theme parks on the overall image through regression analysis. The findings carry meaningful implications for theme park managers, offering guidance on customer needs, perceived negative attributes and how to improve visitor experiences.

Originality/value

This study explores the attribute characteristics of cognitive and affective images of theme parks and their influence on the overall image, thereby enriching the research on the connotations of cognitive-affective theory. In particular, this study introduces and quantitatively analyses the concept of theme parks for the first time through a large-scale data analysis, which empirically reconciles the contradictions of previous reviews of different definitions of theme parks.

图形摘要

主题公园评论:文本挖掘的认知特征和情感如何决定主题公园形象

摘要

目的

主题公园行业备受关注, 而游客的看法是改进主题公园管理的关键所在。本研究运用认知-情感理论, 旨在探索游客评论的认知属性与情感态度, 以及它们如何影响主题公园的整体形象。

设计/方法/途径

采用混合研究方法, 通过文本挖掘和逻辑回归分析游客对主题公园的认知、情感及总体评价, 并验证它们之间的内在关系。

发现

研究1证实了主题公园的六个特征所产生的影响, 包括餐饮消费、商品销售、空间性、沉浸式技术、互动表演和主题化。研究2表明, 游客评价中存在更细化的情感, 如好感、悲伤、厌恶、惊讶、恐惧、喜悦和愤怒。研究3通过回归分析证实了与主题公园相关的认知和情感特征对整体形象具有显著影响。这些研究结果对主题公园管理者具有重要意义, 为了解客户需求、识别负面属性以及如何改善游客体验提供了指导。

原创性

本研究对主题公园认知和情感形象的属性特征及其对整体形象的影响进行了探索, 从而丰富了认知-情感理论内涵。特别是本研究首次通过引入大规模数据并量化分析了主题公园的概念, 从实证角度调和了以往针对主题公园不同定义的相关评论中存在的矛盾。

Resumen gráfico

Reseñas de parques temáticos: cómo la minería de textos de las características cognitivas y las emociones pueden determinar la imagen del parque temático

Resumen

Propósito

El sector de los parques temáticos ha atraído una gran atención y las percepciones de los visitantes son clave para mejorar su gestión. Aplicando la teoría cognitivo-afectiva, este estudio pretende explorar diversos atributos cognitivos y actitudes afectivas, y cómo afectan a la imagen global del parque temático.

Diseño/metodología/enfoque

Se adoptó un enfoque de investigación de métodos mixtos para analizar las evaluaciones cognitivas, afectivas y globales de los turistas sobre los parques temáticos mediante minería de textos y regresión logística, y para validar la relación intrínseca entre ellas.

Conclusiones

El estudio 1 confirmó el impacto de seis características de los parques temáticos, como el consumo de alimentos y bebidas, el merchandising, la espacialidad, las tecnologías inmersivas, los espectáculos interactivos y la tematización. El estudio 2 reveló la presencia de emociones más sutiles en las evaluaciones de los visitantes, como la bondad, la tristeza, el asco, la sorpresa, el miedo, la alegría y la ira. El estudio 3 confirmó, mediante un análisis de regresión, que las características cognitivas y las emociones asociadas a los parques temáticos tienen un efecto significativo en la imagen global. Estas conclusiones tienen importantes implicaciones para los gestores de los parques temáticos, ya que proporcionan orientación para comprender las necesidades de los clientes, identificar los atributos negativos percibidos y saber cómo mejorar las experiencias de los visitantes.

Originalidad

Este estudio explora las características de los atributos de las imágenes cognitivas y afectivas de los parques temáticos y su impacto en la imagen global, enriqueciendo así la investigación sobre las connotaciones de la teoría cognitivo-afectiva. En particular, este estudio introduce y analiza cuantitativamente por primera vez el concepto de parque temático mediante un análisis de datos a gran escala, que concilia empíricamente las contradicciones que existían en revisiones anteriores de las distintas definiciones de parque temático.

Access Restricted. View access options
Article
Publication date: 29 October 2024

Xinhai Chen, Zhichao Wang, Yang Liu, Yufei Pang, Bo Chen, Jianqiang Chen, Chunye Gong and Jie Liu

The quality of the unstructured mesh has a considerable impact on the stability and accuracy of aerodynamic simulation in computational fluid dynamics (CFD). Typically, engineers…

37

Abstract

Purpose

The quality of the unstructured mesh has a considerable impact on the stability and accuracy of aerodynamic simulation in computational fluid dynamics (CFD). Typically, engineers spend a significant portion of their time on mesh quality evaluation to ensure a valid, high-quality mesh. The extensive manual interaction and a priori knowledge required to undertake an accurate and timely evaluation process have become a bottleneck in the idealized efficient CFD workflow. This paper aims to introduce a neural network-based quality evaluation approach for unstructured meshes to enable higher efficiency and the level of automation.

Design/methodology/approach

The paper investigates the capability of deep neural networks for the quality evaluation of unstructured meshes. For training the network, we build a training dataset for mesh quality learning algorithms. The dataset contains a rich variety of unstructured aircraft meshes with different mesh sizes, densities, cell distribution, growth ratios and cell numbers to ensure its diversity and availability. We also design a neural network, AircraftNet, to learn the effect of mesh quality on the convergent properties of the numerical solutions. The proposed network directly manipulates raw point data in mesh source files rather than passing it to an intermediate data representation. During training, AircraftNet extracts non-linear quality features from high-dimensional data spaces and then automatically predicts the overall quality of the input unstructured mesh.

Findings

The paper provides a series of experimental results on GPUs. It shows that AircraftNet is able to effectively analyze the quality-related features like mesh density and distribution from the extracted features and achieve high prediction accuracy on the proposed dataset with even a small number of training runs.

Research limitations/implications

Because of the limited training dataset, the research results may lack generalizability. Therefore, researchers are encouraged to test the proposed propositions further.

Originality/value

The paper publishes a benchmarking dataset for mesh quality learning algorithms and designs a novel neural network approach for unstructured mesh quality evaluation.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Access

Year

Last 6 months (3)

Content type

1 – 3 of 3
Per page
102050