Search results

1 – 10 of over 1000
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 12 September 2024

Zhanglin Peng, Tianci Yin, Xuhui Zhu, Xiaonong Lu and Xiaoyu Li

To predict the price of battery-grade lithium carbonate accurately and provide proper guidance to investors, a method called MFTBGAM is proposed in this study. This method…

64

Abstract

Purpose

To predict the price of battery-grade lithium carbonate accurately and provide proper guidance to investors, a method called MFTBGAM is proposed in this study. This method integrates textual and numerical information using TCN-BiGRU–Attention.

Design/methodology/approach

The Word2Vec model is initially employed to process the gathered textual data concerning battery-grade lithium carbonate. Subsequently, a dual-channel text-numerical extraction model, integrating TCN and BiGRU, is constructed to extract textual and numerical features separately. Following this, the attention mechanism is applied to extract fusion features from the textual and numerical data. Finally, the market price prediction results for battery-grade lithium carbonate are calculated and outputted using the fully connected layer.

Findings

Experiments in this study are carried out using datasets consisting of news and investor commentary. The findings reveal that the MFTBGAM model exhibits superior performance compared to alternative models, showing its efficacy in precisely forecasting the future market price of battery-grade lithium carbonate.

Research limitations/implications

The dataset analyzed in this study spans from 2020 to 2023, and thus, the forecast results are specifically relevant to this timeframe. Altering the sample data would necessitate repetition of the experimental process, resulting in different outcomes. Furthermore, recognizing that raw data might include noise and irrelevant information, future endeavors will explore efficient data preprocessing techniques to mitigate such issues, thereby enhancing the model’s predictive capabilities in long-term forecasting tasks.

Social implications

The price prediction model serves as a valuable tool for investors in the battery-grade lithium carbonate industry, facilitating informed investment decisions. By using the results of price prediction, investors can discern opportune moments for investment. Moreover, this study utilizes two distinct types of text information – news and investor comments – as independent sources of textual data input. This approach provides investors with a more precise and comprehensive understanding of market dynamics.

Originality/value

We propose a novel price prediction method based on TCN-BiGRU Attention for “text-numerical” information fusion. We separately use two types of textual information, news and investor comments, for prediction to enhance the model's effectiveness and generalization ability. Additionally, we utilize news datasets including both titles and content to improve the accuracy of battery-grade lithium carbonate market price predictions.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Access Restricted. View access options
Article
Publication date: 23 December 2024

Jiaqi Liu, Jialong Jiang, Mingwei Lin, Hong Chen and Zeshui Xu

When recommending products to consumers, it is important to be able to accurately predict how consumers will rate them. However, existing collaborative filtering models are…

14

Abstract

Purpose

When recommending products to consumers, it is important to be able to accurately predict how consumers will rate them. However, existing collaborative filtering models are difficult to achieve a balance between rating prediction accuracy and complexity. Therefore, the purpose of this paper is to propose an accurate and effective model to predict users’ ratings of products for the accurate recommendation of products to users.

Design/methodology/approach

First, we introduce an attention mechanism that dynamically assigns weights to user preferences, highlighting key interaction information and enhancing the model’s understanding of user behavior. Second, a fold embedding strategy is employed to segment user interaction data, increasing the information density of each subset while reducing the complexity of the attention mechanism. Finally, a masking strategy is integrated to mitigate overfitting by concealing portions of user-item interactions, thereby improving the model’s generalization ability.

Findings

The experimental results demonstrate that the proposed model significantly minimizes prediction error across five real-world datasets. On average, the evaluation metrics root mean square error (RMSE) and mean absolute error (MAE) are reduced by 9.11 and 13.3%, respectively. Additionally, the Friedman test results confirm that these improvements are statistically significant. Consequently, the proposed model more accurately captures the intrinsic correlation between users and products, leading to a substantial reduction in prediction error.

Originality/value

We propose a novel collaborative filtering model to learn the user-item interaction matrix effectively. Additionally, we introduce a fold embedding strategy to reduce the computational resource consumption of the attention mechanism. Finally, we implement a masking strategy to encourage the model to focus on key features and patterns, thereby mitigating overfitting.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Access Restricted. View access options
Article
Publication date: 20 November 2024

Chenxia Zhou, Zhikun Jia, Shaobo Song, Shigang Luo, Xiaole Zhang, Xingfang Zhang, Xiaoyuan Pei and Zhiwei Xu

The aging and deterioration of engineering building structures present significant risks to both life and property. Fiber Bragg grating (FBG) sensors, acclaimed for their…

97

Abstract

Purpose

The aging and deterioration of engineering building structures present significant risks to both life and property. Fiber Bragg grating (FBG) sensors, acclaimed for their outstanding reusability, compact form factor, lightweight construction, heightened sensitivity, immunity to electromagnetic interference and exceptional precision, are increasingly being adopted for structural health monitoring in engineering buildings. This research paper aims to evaluate the current challenges faced by FBG sensors in the engineering building industry. It also anticipates future advancements and trends in their development within this field.

Design/methodology/approach

This study centers on five pivotal sectors within the field of structural engineering: bridges, tunnels, pipelines, highways and housing construction. The research delves into the challenges encountered and synthesizes the prospective advancements in each of these areas.

Findings

The exceptional performance of FBG sensors provides an ideal solution for comprehensive monitoring of potential structural damages, deformations and settlements in engineering buildings. However, FBG sensors are challenged by issues such as limited monitoring accuracy, underdeveloped packaging techniques, intricate and time-intensive embedding processes, low survival rates and an indeterminate lifespan.

Originality/value

This introduces an entirely novel perspective. Addressing the current limitations of FBG sensors, this paper envisions their future evolution. FBG sensors are anticipated to advance into sophisticated multi-layer fiber optic sensing networks, each layer encompassing numerous channels. Data integration technologies will consolidate the acquired information, while big data analytics will identify intricate correlations within the datasets. Concurrently, the combination of finite element modeling and neural networks will enable a comprehensive simulation of the adaptability and longevity of FBG sensors in their operational environments.

Details

Sensor Review, vol. 45 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Available. Open Access. Open Access
Article
Publication date: 26 July 2024

Sandy Harianto and Janto Haman

The purpose of our study is to investigate the effects of politically-connected boards (PCBs) on over-(under-)investment in labor. We also examine the impacts of the supervisory…

615

Abstract

Purpose

The purpose of our study is to investigate the effects of politically-connected boards (PCBs) on over-(under-)investment in labor. We also examine the impacts of the supervisory board (SB)’s optimal tenure on the association between PCBs and over-investment in labor.

Design/methodology/approach

We constructed the proxy for PCBs using a dummy variable set to 1 (one) if a firm has politically-connected boards and zero (0) otherwise. For the robustness check, we used the number of politically-connected members on the boards as the proxy for PCBs.

Findings

We find that the presence of PCBs reduces over-investment in labor. Consistent with our prediction, we found no significant association between PCBs and under-investment in labor. We also find that the SB with optimal tenure strengthens the negative association between PCBs and over-investment in labor. In our channel analysis, we find that the presence of PCB mitigates over-investment in labor through a higher dividend payout ratio.

Research limitations/implications

Due to the unavailability of data in firms’ annual reports regarding the number of poorly-skilled and highly skilled employees, we were not able to examine the effect of low-skilled and high-skilled employees on over-investment in labor. Also, we were not able to examine over-(under-)investment in labor by drawing a distinction between general (generalist) and firm-specific human capital (specialist) as suggested by Sevcenko, Wu, and Kacperczyk (2022). Generally, it is more difficult for managers to hire highly-skilled employees, specialists in particular, thereby driving the choice of either over- or under-investing in the labor forces. In addition, in the firms’ annual reports, there is no information regarding temporary employees. Therefore, if and when such data become available, this would provide another avenue for future research.

Practical implications

Our study offers several practical implications and insights to stakeholders (e.g. insiders or management, shareholders, investors, analysts and creditors) in the following ways. First, our study highlights significant differences between capital investment and labor investment. For instance, labor investment is considered an expense rather than an asset (Wyatt, 2008) because, although such investment is human capital and is not recognized on the firm’s balance sheet (Boon et al., 2017). In addition, labor investment is characterized by: its flexibility which enables firms to make frequent adjustments (Hamermesh, 1995; Dixit & Pindyck, 2012; Aksin et al., 2015), its non-homogeneity since every employee is unique (Luo et al., 2020), its direct impact on morale and productivity of a firm (Azadegan et al., 2013; Mishina et al., 2004; Tatikonda et al., 2013), and its financial outlay which affects the ongoing cash flows of a firm (Sualihu et al., 2021; Khedmati et al., 2020; Merz & Yashiv, 2007). Second, our findings reveal that the presence of PCBs could help to reduce over-investment in labor. However, if managers of a firm choose to under-invest in labor in order to obtain better profit in the short-term through cost saving, they should be aware of the potential consequences of facing a financial loss when a new business opportunity suddenly arises which requires a larger labor force. Third, our findings help stakeholders to re-focus on the labor investment. This is crucial due to the fact that labor investment is often neglected by those stakeholders because the expenditure of labor investment is not recognized on the firm’s balance sheet as an asset. Instead, it is written off as an expense in the firm’s income statement. Fourth, our findings also provide insightful information to stakeholders, suggesting that an SB with optimal tenure is more committed to a firm, and this factor plays an important role in strengthening the negative association between PCBs and over-investment in labor.

Social implications

First, our findings provide a valuable understanding of the effects of PCBs on over-(under-)investment in labor. Stakeholders could use information disclosed in the financial statements of a publicly-listed firm to determine the extent of the firm’s investment in labor and PCBs, and compare this information with similar firms in the same industry sector. Second, our findings give a better understanding of the association between investment in labor and political connections , which are human and social capital that could determine the long-term survival and success of a firm. Third, for shareholders, the appointment of board members with political connections is an important strategic decision to build political capital, which is likely to have a long-term impact on the financial performance of a firm; therefore, it requires thoughtful consultation with firm insiders.

Originality/value

Our findings highlight the role of PCBs in reducing over-investment in labor. These findings are significant because both investment in labor and political connections as human and social capital can play an important role in determining the long-term survival and success of a firm.

Details

China Accounting and Finance Review, vol. 26 no. 5
Type: Research Article
ISSN: 1029-807X

Keywords

Access Restricted. View access options
Article
Publication date: 13 August 2024

David Wang and Li Wang

With the increasing popularity of live streaming, the exploration of online behaviors on live streaming platforms has become a research hot spot in academia. However, the…

224

Abstract

Purpose

With the increasing popularity of live streaming, the exploration of online behaviors on live streaming platforms has become a research hot spot in academia. However, the literature lacks cross-cultural investigations into live streaming addictive (LSA) behaviors among viewers. To address this gap, based on stimulus-organism-response (SOR) theory and motivation theory, this study investigates how information seeking, sensation seeking and community commitment (stimulus) affect hedonic and utilitarian motivation (organism), which in turn influence viewers’ LSA behaviors (response). This study also compares American and Chinese viewers to understand how LSA behaviors differ across national cultures.

Design/methodology/approach

We surveyed live stream viewers in both nations, collecting 758 valid samples including 377 Chinese respondents and 381 American respondents for use with the research model. A partial least squares (PLS) approach is employed for data analysis.

Findings

The results show that information seeking increases utilitarian motivation, sensation seeking increases hedonic motivation, and community commitment strengthens both hedonic and utilitarian motivation. Both hedonic motivation and utilitarian motivation positively affect LSA behaviors. In addition, based on cross-cultural analysis, we found that there was a significant mediating path common to the respondents in China and the USA (i.e. sensation seeking ? Hedonic motivation ? LSA).

Originality/value

The findings of this study make theoretical contributions to live streaming research and offer practical guidance for live streaming firms to formulate proper marketing strategies. Last, this study outlines several limitations and possible directions for future research.

Details

Online Information Review, vol. 49 no. 1
Type: Research Article
ISSN: 1468-4527

Keywords

Access Restricted. View access options
Article
Publication date: 22 October 2024

Xiaoyu Lu, Wei Tian, Xingdao Lu, Bo Li and Wenhe Liao

This study aims to propose a calibration method to enhance the positioning accuracy in dual-robot collaborative operations, aiming to address the challenge of drilling hole…

42

Abstract

Purpose

This study aims to propose a calibration method to enhance the positioning accuracy in dual-robot collaborative operations, aiming to address the challenge of drilling hole spacing errors in spacecraft core cabin brackets that require an accuracy of less than 0.5 mm.

Design/methodology/approach

Initially, the cooperative error of dual robots is defined. Subsequently, an integrated model is constructed that encompasses the kinematic model errors of the dual robots, as well as the establishment errors of the base and tool frames. A calibration method for optimizing the cooperative accuracy of dual robots is proposed.

Findings

The application of the proposed method satisfies the collaborative drilling requirements for the spacecraft core cabin. The average cooperative positioning error of the dual robots was reduced from 0.507 to 0.156 mm, with the maximum value and standard deviation decreasing from 1.020 and 0.202 mm to 0.603 and 0.097 mm, respectively. Drilling experiments conducted on a core cabin simulator demonstrated that after calibration, the maximum hole spacing error was reduced from 1.219 to 0.403 mm, with all spacing errors falling below the 0.5 mm threshold, thus meeting the requirements.

Originality/value

This paper addresses the drilling accuracy requirements for spacecraft core cabins by using a calibration method to reduce the cooperative error of dual robots. The algorithm has been validated through experiments using ER 220 robots, confirming its effectiveness in fulfilling the drilling task requirements.

Details

Industrial Robot: the international journal of robotics research and application, vol. 52 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Access Restricted. View access options
Article
Publication date: 18 September 2023

Xiao-Yu Xu, Syed Muhammad Usman Tayyab, Qingdan Jia and Albert H. Huang

Video game streaming (VGS) is emerging as an extremely popular, highly interactive, inordinately subscribed and very dynamic form of digital media. Incorporated environmental…

872

Abstract

Purpose

Video game streaming (VGS) is emerging as an extremely popular, highly interactive, inordinately subscribed and very dynamic form of digital media. Incorporated environmental elements, gratifications and user pre-existing attitudes in VGS, this paper presents the development of an extended model of uses and gratification theory (EUGT) for predicting users' behavior in novel technological context.

Design/methodology/approach

The proposed model was empirically tested in VGS context due to its popularity, interactivity and relevance. Data collected from 308 VGS users and structural equation modeling (SEM) was employed to assess the hypotheses. Multi-model comparison technique was used to assess the explanatory power of EUGT.

Findings

The findings confirmed three significant types elements in determining VGS viewers' engagement, including gratifications (e.g. involvement), environmental cues (e.g. medium appeal) and user predispositions (e.g. pre-existing attitudes). The results revealed that emerging technologies provide potential opportunities for new motives and gratifications, and highlighted the significant of pre-existing attitudes as a mediator in the gratification-uses link.

Originality/value

This study is one of its kind in tackling the criticism on UGT of considering media users too rational or active. The study achieved this objective by considering environmental impacts on user behavior which is largely ignored in recent UGT studies. Also, by incorporating users pre-existing attitudes into UGT framework, this study conceptualized and empirically verified the higher explanatory power of EUGT through a novel multi-modal approach in VGS. Compared to other rival models, EUGS provides a more robust explanation of users' behavior. The findings contribute to the literature of UGT, VGS and users' engagement.

Details

Information Technology & People, vol. 38 no. 1
Type: Research Article
ISSN: 0959-3845

Keywords

Access Restricted. View access options
Article
Publication date: 5 November 2024

Yongcong Luo and He Zhu

Information is presented in various modalities such as text and images, and it can quickly and widely spread on social networks and among the general public through key…

6

Abstract

Purpose

Information is presented in various modalities such as text and images, and it can quickly and widely spread on social networks and among the general public through key communication nodes involved in public opinion events. Therefore, by tracking and identifying key nodes of public opinion, we can determine the direction of public opinion evolution and timely and effectively control public opinion events or curb the spread of false information.

Design/methodology/approach

This paper introduces a novel multimodal semantic enhanced representation based on multianchor mapping semantic community (MAMSC) for identifying key nodes in public opinion. MAMSC consists of four core components: multimodal data feature extraction module, feature vector dimensionality reduction module, semantic enhanced representation module and semantic community (SC) recognition module. On this basis, we combine the method of community discovery in complex networks to analyze the aggregation characteristics of different semantic anchors and construct a three-layer network module for public opinion node recognition in the SC with strong, medium and weak associations.

Findings

The experimental results show that compared with its variants and the baseline models, the MAMSC model has better recognition accuracy. This study also provides more systematic, forward-looking and scientific decision-making support for controlling public opinion and curbing the spread of false information.

Originality/value

We creatively combine the construction of variant autoencoder with multianchor mapping to enhance semantic representation and construct a three-layer network module for public opinion node recognition in the SC with strong, medium and weak associations. On this basis, our constructed MAMSC model achieved the best results compared to the baseline models and ablation evaluation models, with a precision of 91.21%.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Access Restricted. View access options
Article
Publication date: 13 September 2024

Ifeyinwa Juliet Orji and Chukwuebuka Martinjoe U-Dominic

Cybersecurity has received growing attention from academic researchers and industry practitioners as a strategy to accelerate performance gains and social sustainability…

189

Abstract

Purpose

Cybersecurity has received growing attention from academic researchers and industry practitioners as a strategy to accelerate performance gains and social sustainability. Meanwhile, firms are usually prone to cyber-risks that emanate from their supply chain partners especially third-party logistics providers (3PLs). Thus, it is crucial to implement cyber-risks management in 3PLs to achieve social sustainability in supply chains. However, these 3PLs are faced with critical difficulties which tend to hamper the consistent growth of cybersecurity. This paper aims to analyze these critical difficulties.

Design/methodology/approach

Data were sourced from 40 managers in Nigerian 3PLs with the aid of questionnaires. A novel quantitative methodology based on the synergetic combination of interval-valued neutrosophic analytic hierarchy process (IVN-AHP) and multi-objective optimization on the basis of a ratio analysis plus the full multiplicative form (MULTIMOORA) is applied. Sensitivity analysis and comparative analysis with other decision models were conducted.

Findings

Barriers were identified from published literature, finalized using experts’ inputs and classified under organizational, institutional and human (cultural values) dimensions. The results highlight the most critical dimension as human followed by organizational and institutional. Also, the results pinpointed indigenous beliefs (e.g. cyber-crime spiritualism), poor humane orientation, unavailable specific tools for managing cyber-risks and skilled workforce shortage as the most critical barriers that show the highest potential to elicit other barriers.

Research limitations/implications

By illustrating the most significant barriers, this study will assist policy makers and industry practitioners in developing strategies in a coordinated and sequential manner to overcome these barriers and thus, achieve socially sustainable supply chains.

Originality/value

This research pioneers the use of IVN-AHP-MULTIMOORA to analyze cyber-risks management barriers in 3PLs for supply chain social sustainability in a developing nation.

Details

Journal of Enterprise Information Management, vol. 37 no. 6
Type: Research Article
ISSN: 1741-0398

Keywords

Access Restricted. View access options
Article
Publication date: 2 April 2024

Jong-Hyeong Kim and Hanqun Song

Restaurant operators often use auspicious connotations embedded in the names and shapes of dishes to increase consumers’ purchase intentions. However, the interaction effect of…

142

Abstract

Purpose

Restaurant operators often use auspicious connotations embedded in the names and shapes of dishes to increase consumers’ purchase intentions. However, the interaction effect of multiple auspicious cues (i.e. food name and shape) on purchase intentions has rarely been examined in the restaurant context. Thus, grounded in processing fluency theory, this study investigates the direct influence of the two-way interaction effect of food name (auspicious vs nonauspicious) and shape (auspicious vs. nonauspicious) on purchase intentions and its indirect influence via perceived auspiciousness and positive emotions.

Design/methodology/approach

Utilizing a 2 (food name: auspicious name vs. nonauspicious name) × 2 (food shape: auspicious shape vs. nonauspicious shape) between-subjects design, the authors conducted two experimental studies with 356 Chinese customers. In Study 1, which focused on a main dish, we investigated the two-way interaction effect food name × food shape on purchase intentions. In Study 2, we replicated this experimental study by focusing on a different food type (i.e. dessert) to test the direct and indirect influences of the two-way interaction of food name × food shape on purchase intentions through perceived auspiciousness and positive emotions.

Findings

The results reveal that the congruity condition of auspicious names and shapes significantly influences consumers’ purchase intentions. Congruity with auspicious food cues also indirectly affects purchase intentions through consumers’ perceived auspiciousness and positive emotions. These effects were consistently observed in two experimental studies analyzing different dish types (main dish and dessert).

Practical implications

Restaurateurs should consider utilizing auspicious food cues to attract customers. Specifically, they should combine both food name and shape to increase their perceived auspiciousness and sales.

Originality/value

This study tested processing fluency theory using auspicious food cues. This study contributes to the hospitality literature by improving our understanding of the congruence effect by exemplifying the conceptual alignment between food name and food shape.

Details

Asia Pacific Journal of Marketing and Logistics, vol. 36 no. 10
Type: Research Article
ISSN: 1355-5855

Keywords

1 – 10 of over 1000
Per page
102050