Search results
1 – 10 of 19Umair Khan, Aurang Zaib, Anuar Ishak, El-Sayed M. Sherif and Piotr Wróblewski
Ferrofluids are aqueous or non-aqueous solutions with colloidal particles of iron oxide nanoparticles with high magnetic characteristics. Their magnetic characteristics enable…
Abstract
Purpose
Ferrofluids are aqueous or non-aqueous solutions with colloidal particles of iron oxide nanoparticles with high magnetic characteristics. Their magnetic characteristics enable them to be controlled and manipulated when ferrofluids are exposed to magnetic fields. This study aims to inspect the features of unsteady stagnation point flow (SPF) and heat flux from the surface by incorporating ferromagnetic particles through a special kind of second-grade fluid (SGF) across a movable sheet with a nonlinear heat source/sink and magnetic field effect. The mass suction/injection and stretching/shrinking boundary conditions are also inspected to calculate the fine points of the features of multiple solutions.
Design/methodology/approach
The leading equations that govern the ferrofluid flow are reduced to a group of ordinary differential equations by applying similarity variables. The converted equations are numerically solved through the bvp4c solver. Afterward, study and discussion are carried out to examine the different physical parameters of the characteristics of nanofluid flow and thermal properties.
Findings
Multiple solutions are revealed to happen for situations of unsteadiness, shrinking as well as stretching sheets. Greater suction slows the separation of the boundary layers and causes the critical values to expand. The region where the multiple solutions appear is observed to expand with increasing values of the magnetic, non-Newtonian and suction parameters. Moreover, the fluid velocity significantly uplifts while the temperature declines due to the suction parameter.
Originality/value
The novelty of the work is to deliberate the impact of mass suction/injection on the unsteady SPF through the special second-grade ferrofluids across a movable sheet with an erratic heat source/sink. The confirmed results provide a very good consistency with the accepted papers. Previous studies have not yet fully explored the entire analysis of the proposed model.
Details
Keywords
Latifah Falah Alharbi, Umair Khan, Aurang Zaib and Anuar Ishak
A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids…
Abstract
Purpose
A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids outperform single nanofluids in terms of thermal performance. This study aims to address the stagnation point flow induced by Williamson hybrid nanofluids across a vertical plate. This fluid is drenched under the influence of mixed convection in a Darcy–Forchheimer porous medium with heat source/sink and entropy generation.
Design/methodology/approach
By applying the proper similarity transformation, the partial differential equations that represent the leading model of the flow problem are reduced to ordinary differential equations. For the boundary value problem of the fourth-order code (bvp4c), a built-in MATLAB finite difference code is used to tackle the flow problem and carry out the dual numerical solutions.
Findings
The shear stress decreases, but the rate of heat transfer increases because of their greater influence on the permeability parameter and Weissenberg number for both solutions. The ability of hybrid nanofluids to strengthen heat transfer with the incorporation of a porous medium is demonstrated in this study.
Practical implications
The findings may be highly beneficial in raising the energy efficiency of thermal systems.
Originality/value
The originality of the research lies in the investigation of the Darcy–Forchheimer stagnation point flow of a Williamson hybrid nanofluid across a vertical plate, considering buoyancy forces, which introduces another layer of complexity to the flow problem. This aspect has not been extensively studied before. The results are verified and offer a very favorable balance with the acknowledged papers.
Details
Keywords
Latifah Falah Alharbi, Umair Khan, Aurang Zaib, S.H.A.M. Shah, Anuar Ishak and Taseer Muhammad
Thermophoresis deposition of particles is a crucial stage in the spread of microparticles over temperature gradients and is significant for aerosol and electrical technologies. To…
Abstract
Purpose
Thermophoresis deposition of particles is a crucial stage in the spread of microparticles over temperature gradients and is significant for aerosol and electrical technologies. To track changes in mass deposition, the effect of particle thermophoresis is therefore seen in a mixed convective flow of Williamson hybrid nanofluids upon a stretching/shrinking sheet.
Design/methodology/approach
The PDEs are transformed into ordinary differential equations (ODEs) using the similarity technique and then the bvp4c solver is employed for the altered transformed equations. The main factors influencing the heat, mass and flow profiles are displayed graphically.
Findings
The findings imply that the larger effects of the thermophoretic parameter cause the mass transfer rate to drop for both solutions. In addition, the suggested hybrid nanoparticles significantly increase the heat transfer rate in both outcomes. Hybrid nanoparticles work well for producing the most energy possible. They are essential in causing the flow to accelerate at a high pace.
Practical implications
The consistent results of this analysis have the potential to boost the competence of thermal energy systems.
Originality/value
It has not yet been attempted to incorporate hybrid nanofluids and thermophoretic particle deposition impact across a vertical stretching/shrinking sheet subject to double-diffusive mixed convection flow in a Williamson model. The numerical method has been validated by comparing the generated numerical results with the published work.
Details
Keywords
Farah Nadzirah Jamrus, Anuar Ishak, Iskandar Waini and Umair Khan
In recent times, ternary hybrid nanofluid has garnered attention from scientist and researchers due to its improved thermal efficiency. This study aims to delve into the…
Abstract
Purpose
In recent times, ternary hybrid nanofluid has garnered attention from scientist and researchers due to its improved thermal efficiency. This study aims to delve into the examination of ternary hybrid nanofluid (Al2O3–Cu–TiO2/water), particularly concerning axisymmetric flow over a nonlinearly permeable stretching/shrinking disk. In addition, the investigation of convective boundary conditions and thermal radiation effects is also considered within the context of the described flow problem.
Design/methodology/approach
Mathematical formulations representing this problem are reduced into a set of ordinary differential equations (ODEs) using similarity transformation. The MATLAB boundary value problem solver is then used to solve the obtained set of ODEs. The impact of considered physical parameters such as suction parameter, radiation parameter, nonlinear parameter, nanoparticle volumetric concentration and Biot number on the flow profiles as well as the physical quantities is illustrated in graphical form.
Findings
The findings revealed the thermal flux for the nonlinearly shrinking disk is approximately 1.33%, significantly higher when compared to the linearly shrinking disk. Moreover, the existence of dual solutions attributed to the nonlinear stretching/shrinking disk is unveiled, with the first solution being identified as the stable and reliable solution through temporal stability analysis.
Practical implications
Understanding ternary hybrid nanofluid behavior and flow has applications in engineering, energy systems and materials research. This study may help develop and optimize nanofluid systems like heat exchangers and cooling systems.
Originality/value
The study of flow dynamics across nonlinear stretching/shrinking disk gains less attention compared to linear stretching/shrinking geometries. Many natural and industrial processes involve nonlinear changes in boundary shapes or sizes. Understanding flow dynamics over nonlinear shrinking/stretching disks is therefore essential for applications in various fields such as materials processing, biomedical engineering and environmental sciences. Hence, this study highlights the axisymmetric flow over a nonlinear stretching/shrinking disk using ternary hybrid nanofluid composed of alumina (Al2O3), copper (Cu) and titania (TiO2). Besides, this study tackles a complex problem involving multiple factors such as suction, radiation and convective boundary conditions. Analyzing such complex systems can provide valuable insights into real-world phenomena where multiple factors interact.
Details
Keywords
A.M. Obalalu, E.O. Fatunmbi, J.K. Madhukesh, S.H.A.M. Shah, Umair Khan, Anuar Ishak and Taseer Muhammad
Recent advancements in technology have led to the exploration of solar-based thermal radiation and nanotechnology in the field of fluid dynamics. Solar energy is captured through…
Abstract
Purpose
Recent advancements in technology have led to the exploration of solar-based thermal radiation and nanotechnology in the field of fluid dynamics. Solar energy is captured through sunlight absorption, acting as the primary source of heat. Various solar technologies, such as solar water heating and photovoltaic cells, rely on solar energy for heat generation. This study focuses on investigating heat transfer mechanisms by utilizing a hybrid nanofluid within a parabolic trough solar collector (PTSC) to advance research in solar ship technology. The model incorporates multiple effects that are detailed in the formulation.
Design/methodology/approach
The mathematical model is transformed using suitable similarity transformations into a system of higher-order nonlinear differential equations. The model was solved by implementing a numerical procedure based on the Wavelets and Chebyshev wavelet method for simulating the outcome.
Findings
The velocity profile is reduced by Deborah's number and velocity slip parameter. The Ag-EG nanoparticles mixture demonstrates less smooth fluid flow compared to the significantly smoother fluid flow of the Ag-Fe3O4/EG hybrid nanofluids (HNFs). Additionally, the Ag-Ethylene Glycol nanofluids (NFs) exhibit higher radiative performance compared to the Ag-Fe3O4/Ethylene Glycol hybrid nanofluids (HNFs).
Practical implications
Additionally, the Oldroyd-B hybrid nanofluid demonstrates improved thermal conductivity compared to traditional fluids, making it suitable for use in cooling systems and energy applications in the maritime industry.
Originality/value
The originality of the study lies in the exploration of the thermal transport enhancement in sun-powered energy ships through the incorporation of silver-magnetite hybrid nanoparticles within the heat transfer fluid circulating in parabolic trough solar collectors. This particular aspect has not been thoroughly researched previously. The findings have been validated and provide a highly positive comparison with the research papers.
Details
Keywords
This chapter explores the role and impact of adaptive thinking and transformational leadership in developing and leading an enabling culture that aligns with a school’s vision and…
Abstract
This chapter explores the role and impact of adaptive thinking and transformational leadership in developing and leading an enabling culture that aligns with a school’s vision and mission. This chapter will also probe the varying dimensions that enable or inhibit a school culture and the tools needed to shape and maintain it including the challenges posed in the Middle East and North Africa (MENA) region. In this chapter, examples of adaptive challenges, data-driven instructions, and effective use of technology, will be referred to as one dimension of a culture that shows alignment or lack of it with the school’s vision and mission, the role and impact of transformative adaptive leadership on school’s overall culture, especially in the UAE, and MENA region. Finally, this chapter will examine the impact of adaptive and distributed leadership in leading a cultural change.
Details
Keywords
Iskandar Waini, Farah Nadzirah Jamrus, Natalia C. Roșca, Alin V. Roșca and Ioan Pop
This study aims to investigate the dual solutions for axisymmetric flow and heat transfer due to a permeable radially shrinking disk in copper oxide (CuO) and silver (Ag) hybrid…
Abstract
Purpose
This study aims to investigate the dual solutions for axisymmetric flow and heat transfer due to a permeable radially shrinking disk in copper oxide (CuO) and silver (Ag) hybrid nanofluids with radiation effect.
Design/methodology/approach
The partial differential equations that governed the problem will undergo a transformation into a set of similarity equations. Following this transformation, a numerical solution will be obtained using the boundary value problem solver, bvp4c, built in the MATLAB software. Later, analysis and discussion are conducted to specifically examine how various physical parameters affect both the flow characteristics and the thermal properties of the hybrid nanofluid.
Findings
Dual solutions are discovered to occur for the case of shrinking disk (λ < 0). Stronger suction triggers the critical values’ expansion and delays the boundary layer separation. Through stability analysis, it is determined that one of the solutions is stable, whereas the other solution exhibits instability, over time. Moreover, volume fraction upsurge enhances skin friction and heat transfer in hybrid nanofluid. The hybrid nanofluid’s heat transfer also heightened with the influence of radiation.
Originality/value
Flow over a shrinking disk has received limited research focus, in contrast to the extensively studied axisymmetric flow problem over a diverse set of geometries such as flat surfaces, curved surfaces and cylinder. Hence, this study highlights the axisymmetric flow due to a shrinking disk under radiation influence, using hybrid nanofluids containing CuO and Ag. Upon additional analysis, it is evidently shows that only one of the solutions exhibits stability, making it a physically dependable choice in practical applications. The authors are very confident that the findings of this study are novel, with several practical uses of hybrid nanofluids in modern industry.
Details
Keywords
Nur Raudhatul Jannah Mohd Shelahudin, Abdul Hafaz Ngah, Samar Rahi, Serge Gabarre, Safiek Mokhlis and Jassim Ahmad Al-Gasawneh
The purpose of this paper is to extend the Push-Pull-Mooring (PPM) theory to identify the factors influencing Muslim customers’ switching intention to halal-certified cosmetics.
Abstract
Purpose
The purpose of this paper is to extend the Push-Pull-Mooring (PPM) theory to identify the factors influencing Muslim customers’ switching intention to halal-certified cosmetics.
Design/methodology/approach
A snowballing sampling method was used to distribute an online questionnaire via social media platforms. Of 403 questionnaires, only 363 were usable. SmartPLS 4 was used to analyse the data using a structural equation modelling approach.
Findings
The findings of this paper confirmed that social influence and scepticism have a positive effect on the switching intention to halal cosmetics. However, compatibility with current cosmetic products has a negative effect on the switching intention to halal cosmetics. On the other hand, negative side effects and negative past experiences have a positive effect on scepticism. Scepticism was also found to mediate the relationship between negative side effects and negative past experiences toward the switching intention to halal cosmetics.
Practical implications
The findings of this study primarily benefit cosmetics manufacturers, whether halal-certified or otherwise.
Originality/value
This study extends the PPM theory with negative side effects and negative past experiences. Moreover, this study also introduces new relationships and untested relationships between scepticism and switching intention. This study shows the mediating effects of scepticism on the relationship between negative side effects and negative past experiences toward switching intention.
Details
Keywords
Christine Wan Shean Liew and Noorliza Karia
Globally, the halal cosmetics market is experiencing rapid growth and is considered a key economic driver in shaping economy development and growth. However, the extant research…
Abstract
Purpose
Globally, the halal cosmetics market is experiencing rapid growth and is considered a key economic driver in shaping economy development and growth. However, the extant research on halal cosmetics is fragmented, potentially impeding the field’s advancement when challenged with conflicting viewpoints and limited replications. Therefore, this paper aims to address the knowledge gap by conducting a rigorous and technology-enabled systematic review by leveraging appropriate software to comprehensively evaluate the state of the halal cosmetics literature.
Design/methodology/approach
A domain-based review using a hybrid approach that incorporates both bibliometric and interpretive analyses are used to comprehensively assess the current progress of halal cosmetics, identify research gaps and suggest potential directions for future research.
Findings
Through a comprehensive review of 66 articles, this review provides a holistic and comprehensive overview of halal cosmetics that both academic scholars and market practitioners can rely upon in strategizing and positioning for future development of halal cosmetics. The study provides a holistic and comprehensive overview of halal cosmetics that both academic scholars and market practitioners can reply upon in strategizing and positioning for future development of halal cosmetics.
Originality/value
The fragmented knowledge of extant research on halal cosmetics across various disciplines limits a comprehensive understanding of the field. It is opportune to conduct a comprehensive and systematic review of the field, providing insight into both its current and future progress. In this regard, this review serves as a “one-stop reference” in providing a state-of-the-art understanding of the field, and enables industry practitioners to reveal the full potential and bridge the theory-practice gap in the halal cosmetics industry.
Details
Keywords
Sivasankaran Sivanandam, Turki J. Alqurashi and Hashim M. Alshehri
This study aims to investigate numerically the impact of the three-dimensional convective nanoliquid flow on a rotating frame embedded in the non-Darcy porous medium in the…
Abstract
Purpose
This study aims to investigate numerically the impact of the three-dimensional convective nanoliquid flow on a rotating frame embedded in the non-Darcy porous medium in the presence of activation energy. The cross-diffusion effects, i.e. Soret and Dufour effects, and heat generation are included in the study. The convective heating condition is applied on the bounding surface.
Design/methodology/approach
The control model consisted of a system of partial differential equations (PDE) with boundary constraints. Using suitable similarity transformation, the PDE transformed into an ordinary differential equation and solved numerically by the Runge–Kutta–Fehlberg method. The obtained results of velocity, temperature and solute concentration characteristics plotted to show the impact of the pertinent parameters. The heat and mass transfer rate and skin friction are also calculated.
Findings
It is found that both Biot numbers enhance the heat and mass distribution inside the boundary layer region. The temperature increases by increasing the Dufour number, while concentration decreases by increasing the Dufour number. The heat transfer is increased up to 8.1% in the presence of activation energy parameter (E). But, mass transfer rate declines up to 16.6% in the presence of E.
Practical implications
The applications of combined Dufour and Soret effects are in separation of isotopes in mixture of gases, oil reservoirs and binary alloys solidification. The nanofluid with porous medium can be used in chemical engineering, heat exchangers and nuclear reactor.
Social implications
This study is mainly useful for thermal sciences and chemical engineering.
Originality/value
The uniqueness in this research is the study of the impact of activation energy and cross-diffusion on rotating nanoliquid flow with heat generation and convective heating condition. The obtained results are unique and valuable, and it can be used in various fields of science and technology.
Details