Search results

1 – 3 of 3
Article
Publication date: 29 April 2024

Surath Ghosh

Financial mathematics is one of the most rapidly evolving fields in today’s banking and cooperative industries. In the current study, a new fractional differentiation operator…

Abstract

Purpose

Financial mathematics is one of the most rapidly evolving fields in today’s banking and cooperative industries. In the current study, a new fractional differentiation operator with a nonsingular kernel based on the Robotnov fractional exponential function (RFEF) is considered for the Black–Scholes model, which is the most important model in finance. For simulations, homotopy perturbation and the Laplace transform are used and the obtained solutions are expressed in terms of the generalized Mittag-Leffler function (MLF).

Design/methodology/approach

The homotopy perturbation method (HPM) with the help of the Laplace transform is presented here to check the behaviours of the solutions of the Black–Scholes model. HPM is well known for its accuracy and simplicity.

Findings

In this attempt, the exact solutions to a famous financial market problem, namely, the BS option pricing model, are obtained using homotopy perturbation and the LT method, where the fractional derivative is taken in a new YAC sense. We obtained solutions for each financial market problem in terms of the generalized Mittag-Leffler function.

Originality/value

The Black–Scholes model is presented using a new kind of operator, the Yang-Abdel-Aty-Cattani (YAC) operator. That is a new concept. The revised model is solved using a well-known semi-analytic technique, the homotopy perturbation method (HPM), with the help of the Laplace transform. Also, the obtained solutions are compared with the exact solutions to prove the effectiveness of the proposed work. The different characteristics of the solutions are investigated for different values of fractional-order derivatives.

Details

Engineering Computations, vol. 41 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 August 2023

Tasmia Roshan, Surath Ghosh, Ram P. Chauhan and Sunil Kumar

The fractional order HIV model has an important role in biological science. To study the HIV model in a better way, the model is presented with the help of Atangana- Baleanu…

Abstract

Purpose

The fractional order HIV model has an important role in biological science. To study the HIV model in a better way, the model is presented with the help of Atangana- Baleanu operator which is in Caputo sense. Also, the characteristics of the solutions are described briefly with the help of the advance numerical techniques for the different values of fractional order derivatives. This paper aims to discuss the aforementioned objectives.

Design/methodology/approach

In this work, Adams-Bashforth method and Euler method are used to get the solution of the HIV model. These are the important numerical methods. The comparison results also are described with the physical meaning of the solutions of the model.

Findings

HIV model is analyzed under the view of fractional and AB derivative in Atangana-Baleanu-Caputo sense. The uniqueness of the solution is proved by using Banach Fixed point. The solution is derived with the help of Sumudu transform. Further, the authors employed fractional Adam-Bashforth method and Euler method to enumerate numerical results. The authors have used several values of fractional orders to present the outcomes graphically. The above calculations have been done with the help of MATLAB (R2016a). The numerical scheme used in the proposed study is valid and fruitful, and the same can be used to explore other real issues.

Research limitations/implications

This investigation can be done for the real data sets.

Practical implications

This paper aims to express the solution of the HIV model in a better way with the effect of non-locality, this work is very useful.

Originality/value

In this work, HIV model is developed with the help of Atangana- Baleanu operator in Caputo sense. By using Banach Fixed point, the authors proved that the solution is unique. Also, the solution is presented with the help of Sumudu transform. The behaviors of the solutions are checked for different values of fractional order derivatives with the physical meaning with help of the Adam-Bashforth method and the Euler method.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 October 2021

Sunil Kumar, Surath Ghosh, Shaher Momani and S. Hadid

The population model has an important role in biology to interpret the spreading rate of viruses and parasites. This biological model is also used to identify fragile species…

Abstract

Purpose

The population model has an important role in biology to interpret the spreading rate of viruses and parasites. This biological model is also used to identify fragile species. This paper aims to propose a new Yang-Abdel-Aty-Cattani (YAC) fractional operator with a non-singular kernel to solve nonlinear partial differential equation, which is arised in biological population model. Here, this study has explained the analytical methods, reduced differential transform method (RDTM) and residual power series method (RPSM) taking the fractional derivative as YAC operator sense.

Design/methodology/approach

This study has explained the analytical methods, RDTM and RPSM taking the fractional derivative as YAC operator sense.

Findings

This study has expressed the solutions in terms of Mittag-Leffler functions. Also, this study has compared the solutions with the exact solutions. Three examples are described for the accuracy and efficiency of the results.

Research limitations/implications

The population model has an important role in biology to interpret the spreading rate of viruses and parasites. This biological model is also used to identify fragile species. In this study, the main aim is to propose a new YAC fractional operator with non-singular kernel to solve nonlinear partial differential equation, which is arised in biological population model. Here, this study has explained the analytical methods, RDTM and RPSM taking the fractional derivative as YAC operator sense. This study has expressed the solutions in terms of Mittag-Leer functions. Also, this study has compared the solutions with the exact solutions. Three examples are described for the accuracy and efficiency of the results.

Practical implications

The population model has an important role in biology to interpret the spreading rate of viruses and parasites. This biological model is also used to identify fragile species. In this paper, the main aim is to propose a new YAC fractional operator with non-singular kernel to solve nonlinear partial differential equation which is arised in biological population model. Here, this study has explained the analytical methods, RDTM and RPSM taking the fractional derivative as YAC operator sense. This study has expressed the solutions in terms of Mittag-Leer functions. Also, this study has compared the solutions with the exact solutions. Three examples are described for the accuracy and efficiency of the results.

Social implications

The population model has an important role in biology to interpret the spreading rate of viruses and parasites. This biological model is also used to identify fragile species. In this paper, the main aim is to propose a new YAC fractional operator with non-singular kernel to solve nonlinear partial differential equation, which is arised in biological population model. Here, this paper has explained the analytical methods, RDTM and RPSM taking the fractional derivative as YAC operator sense. This study has expressed the solutions in terms of Mittag-Leer functions. Also, this study has compared the solutions with the exact solutions. Three examples are described for the accuracy and efficiency of the results.

Originality/value

The population model has an important role in biology to interpret the spreading rate of viruses and parasites. This biological model is also used to identify fragile species. In this paper, the main aim is to propose a new YAC fractional operator with non-singular kernel to solve nonlinear partial differential equation, which is arised in biological population model. Here, this paper has explained the analytical methods, RDTM and RPSM taking the fractional derivative as YAC operator sense. This study has expressed the solutions in terms of Mittag-Leer functions. Also, this study has compared the solutions with the exact solutions. Three examples are described for the accuracy and efficiency of the results.

Access

Year

All dates (3)

Content type

1 – 3 of 3