To read this content please select one of the options below:

Robotnov function based operator for biological population model of biology

Sunil Kumar (Department of Mathematics, National Institute of Technology, Jamshedpur, India)
Surath Ghosh (NIT Jamshedpur, Seraikela-Kharsawan, India)
Shaher Momani (Department of Mathematics, Faculty of Science, University of Jordan, Amman, Jordan)
S. Hadid (Department of Mathematics and Sciences, College of Humanities and Sciences, Ajman University, Ajman, United Arab Emirates)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 7 October 2021

Issue publication date: 3 January 2022

65

Abstract

Purpose

The population model has an important role in biology to interpret the spreading rate of viruses and parasites. This biological model is also used to identify fragile species. This paper aims to propose a new Yang-Abdel-Aty-Cattani (YAC) fractional operator with a non-singular kernel to solve nonlinear partial differential equation, which is arised in biological population model. Here, this study has explained the analytical methods, reduced differential transform method (RDTM) and residual power series method (RPSM) taking the fractional derivative as YAC operator sense.

Design/methodology/approach

This study has explained the analytical methods, RDTM and RPSM taking the fractional derivative as YAC operator sense.

Findings

This study has expressed the solutions in terms of Mittag-Leffler functions. Also, this study has compared the solutions with the exact solutions. Three examples are described for the accuracy and efficiency of the results.

Research limitations/implications

The population model has an important role in biology to interpret the spreading rate of viruses and parasites. This biological model is also used to identify fragile species. In this study, the main aim is to propose a new YAC fractional operator with non-singular kernel to solve nonlinear partial differential equation, which is arised in biological population model. Here, this study has explained the analytical methods, RDTM and RPSM taking the fractional derivative as YAC operator sense. This study has expressed the solutions in terms of Mittag-Leer functions. Also, this study has compared the solutions with the exact solutions. Three examples are described for the accuracy and efficiency of the results.

Practical implications

The population model has an important role in biology to interpret the spreading rate of viruses and parasites. This biological model is also used to identify fragile species. In this paper, the main aim is to propose a new YAC fractional operator with non-singular kernel to solve nonlinear partial differential equation which is arised in biological population model. Here, this study has explained the analytical methods, RDTM and RPSM taking the fractional derivative as YAC operator sense. This study has expressed the solutions in terms of Mittag-Leer functions. Also, this study has compared the solutions with the exact solutions. Three examples are described for the accuracy and efficiency of the results.

Social implications

The population model has an important role in biology to interpret the spreading rate of viruses and parasites. This biological model is also used to identify fragile species. In this paper, the main aim is to propose a new YAC fractional operator with non-singular kernel to solve nonlinear partial differential equation, which is arised in biological population model. Here, this paper has explained the analytical methods, RDTM and RPSM taking the fractional derivative as YAC operator sense. This study has expressed the solutions in terms of Mittag-Leer functions. Also, this study has compared the solutions with the exact solutions. Three examples are described for the accuracy and efficiency of the results.

Originality/value

The population model has an important role in biology to interpret the spreading rate of viruses and parasites. This biological model is also used to identify fragile species. In this paper, the main aim is to propose a new YAC fractional operator with non-singular kernel to solve nonlinear partial differential equation, which is arised in biological population model. Here, this paper has explained the analytical methods, RDTM and RPSM taking the fractional derivative as YAC operator sense. This study has expressed the solutions in terms of Mittag-Leer functions. Also, this study has compared the solutions with the exact solutions. Three examples are described for the accuracy and efficiency of the results.

Keywords

Citation

Kumar, S., Ghosh, S., Momani, S. and Hadid, S. (2022), "Robotnov function based operator for biological population model of biology", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 32 No. 1, pp. 1-22. https://doi.org/10.1108/HFF-09-2020-0570

Publisher

:

Emerald Publishing Limited

Copyright © 2021, Emerald Publishing Limited

Related articles