Dingding Xiang, Xipeng Tan, Zhenhua Liao, Jinmei He, Zhenjun Zhang, Weiqiang Liu, Chengcheng Wang and Beng Tor Shu
This paper aims to study the wear properties of electron beam melted Ti6Al4V (EBM-Ti6Al4V) in simulated body fluids for orthopedic implant biomedical applications compared with…
Abstract
Purpose
This paper aims to study the wear properties of electron beam melted Ti6Al4V (EBM-Ti6Al4V) in simulated body fluids for orthopedic implant biomedical applications compared with wrought Ti6Al4V (Wr-Ti6Al4V).
Design/methodology/approach
Wear properties of EBM-Ti6Al4V compared with Wr-Ti6Al4V against ZrO2 and Al2O3 have been investigated under dry friction and the 25 Wt.% newborn calf serum (NCS) lubricated condition using a ball-on-disc apparatus reciprocating motion. The microstructure, composition and hardness of the samples were characterized using scanning electron microscopy (SEM), x-ray diffraction and a hardness tester, respectively. The contact angles with 25 Wt.% NCS were measured by a contact angle apparatus. The wear parameters, wear 2D and 3D morphology were obtained using a 3D white light interferometer and SEM.
Findings
EBM-Ti6Al4V yields a higher contact angle than the Wr-Ti6Al4V with the 25 Wt.% NCS. EBM-Ti6Al4V couplings exhibit lower coefficients of friction compared with the Wr-Ti6Al4V couplings under both conditions. There is only a slight difference in the wear resistance between the Wr-Ti6Al4V and EBM-Ti6Al4V alloys. Both Wr-Ti6Al4V and EBM-Ti6Al4V suffer from similar friction and wear mechanisms, i.e. adhesive and abrasive wear in dry friction, while abrasive wear under the NCS condition. The wear depth and wear volume of the ZrO2 couplings are lower than those of the Al2O3 couplings under both conditions.
Originality/value
This paper helps to establish baseline bio-tribological data of additively manufactured Ti6Al4V by electron beam melting in simulated body fluids for orthopedic applications, which will promote the application of additive manufacturing in producing the orthopedic implant.
Details
Keywords
A. Bahrawy, Mohamed El-Rabiei, Hesham Elfiky, Nady Elsayed, Mohammed Arafa and Mosaad Negem
The commercial stainless steels have been used extensively in the biomedicine application and their electrochemical behaviour in the simulated body fluid (SBF) are not uncovered…
Abstract
Purpose
The commercial stainless steels have been used extensively in the biomedicine application and their electrochemical behaviour in the simulated body fluid (SBF) are not uncovered obviously. In this research, the corrosion resistance of the commercial stainless steel of Fe–17Cr–xNi alloys (x = 4, 8, 10 and 14) has been studied. This study aims to evaluate the rate of corrosion and corrosion resistance of some Fe–Cr–Ni alloys in SBF at 37°C.
Design/methodology/approach
In this research, the corrosion resistance of the commercial stainless steel of Fe–17Cr–xNi alloys has been studied using open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization in the SBF at 37°C and pH 7.4 for a week. Also, the surface morphology of the four alloys was investigated using scanning electron microscopy, elemental composition was obtained via energy dispersive spectroscopy and the crystal lattice structure of Fe–17Cr–xNi alloys was obtained using X-ray diffraction technique. The chemical structure of the protective oxide film has been examined by X-ray photoelectron spectroscopy (XPS) and metals ions released into the solution have been detected after different immersion time using atomic absorption spectroscopy.
Findings
The results revealed that the increase of the Ni content leads to the formation of the stable protective film on the alloys such as the Fe–17Cr–10Ni and Fe–17Cr–14Ni alloys which possess solid solution properties. The Fe–17Cr–14Ni alloy displayed highest resistance of corrosion, notable resistance for localized corrosion and the low corrosion rate in SBF because of the formation of a homogenously protective oxide film on the surface. The XPS analysis showed that the elemental Fe, Cr and Ni react with the electrolyte medium and the passive film is mainly composed of Cr2O3 with some amounts of Fe(II) hydroxide at pH 7.4.
Originality/value
This work includes important investigation to use commercial stainless steel alloys for biomedical application.
Details
Keywords
Kexin Liu, Shuhan Meng, Yi Zhang, Peng Zhou, Tao Zhang and Fuhui Wang
The purpose of this paper is to investigate the effect of plasma electrolytic oxidation (PEO) coatings and sealed PEO coatings on the corrosion resistance and cytocompatibility of…
Abstract
Purpose
The purpose of this paper is to investigate the effect of plasma electrolytic oxidation (PEO) coatings and sealed PEO coatings on the corrosion resistance and cytocompatibility of a novel Mg-1Zn-0.45Ca alloy in simulated body fluid (SBF).
Design/methodology/approach
The microstructure, corrosion resistance and cytocompatibility of PEO coatings and phosphate conversion-treated PEO coatings were investigated and was compared with the bare Mg alloy.
Findings
The hot-extruded Mg-Zn-Ca alloy exhibit inhomogeneous microstructure and suffered from localized corrosion in the SBF. The PEO coating after phosphate conversion treatment offers enhanced protectiveness to the Mg alloy within an immersion period of up to 60 days, which is significantly improved compared with the performance of the PEO-coated Mg alloy, but the cytocompatibility was slightly decreased.
Originality/value
This work offers new perspective in balancing the protectiveness and cytocompatibility of bio-materials.
Details
Keywords
Mohammadreza Rahimi, Rouhollah Mehdinavaz Aghdam, Mahmoud Heydarzadeh Sohi, Ali Hossein Rezayan and Maryam Ettelaei
This paper aims to investigate the impact of anodizing time and heat treatment on morphology, phase and corrosion resistance of formed coating. To characterize the anodic oxide…
Abstract
Purpose
This paper aims to investigate the impact of anodizing time and heat treatment on morphology, phase and corrosion resistance of formed coating. To characterize the anodic oxide layer, X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) that was equipped with energy dispersive spectroscopy (EDS) was hired. The corrosion behavior of oxide-coated samples was estimated by electrochemical polarization test in simulated body fluid (SBF).
Design/methodology/approach
Anodic oxidation method is applied to reinforce the corrosion and biological properties of biomaterials in the biomedical industry. In this paper, the alkaline NaOH (1 M) electrolyte was used for AZ31 magnesium alloy anodizing accompanied by heat treatment in the air.
Findings
It can be concluded that the best corrosion resistance belongs to the 10 min anodic oxidized sample and among the heat-treated samples the 30 min anodized sample represented the lowest corrosion rate.
Originality/value
In this study, to the best of the authors’ knowledge for the first time, this paper describes the effect of anodizing process time on NaOH (1 M) electrolyte at 3 V on corrosion behavior of magnesium AZ31 alloy with an alternate method to change the phase composition of the formed oxide layer. The morphology and composition of the obtained anodic oxide layer were investigated under the results of SEM, EDS and XRD. The corrosion behavior of the oxide coatings layer fabricated on the magnesium-based substrate was studied by the potentiodynamic polarization test in the SBF solution.
Details
Keywords
Sarbjit Kaur, Niraj Bala and Charu Khosla
The biomaterials are natural or synthetic materials used to improve quality of life either by replacing tissue/organ or assisting their function in medical field. The purpose of…
Abstract
Purpose
The biomaterials are natural or synthetic materials used to improve quality of life either by replacing tissue/organ or assisting their function in medical field. The purpose of the study is to analyze the hydroxyapatite (HAP), HAP-TiO2 (25 percent) composite coatings deposited on 316 LSS by High Velocity Flame Spray (HVFS) technique.
Design/methodology/approach
The coatings exhibit almost uniform and dense microstructure with porosity (HAP = 0.153 and HAP-TiO2 composite = 0.138). Electrochemical corrosion testing was done on the uncoated and coated specimens in Ringer solution (SBF). As-sprayed coatings were characterized by XRD, SEM/EDS and cross-sectional X-ray mapping techniques before and after dipping in Ringer solution. Microhardness of composite coating (568.8 MPa) was found to be higher than HAP coating (353 MPa).
Findings
During investigations, it was observed that the corrosion resistance of steel was found to have increased after the deposition of HAP and HAP-TiO2 composite coatings. Thus, coatings serve as an effective diffusion barrier to prohibit the diffusion of ions from the SBF into the substrate. Composite coatings have been found to be more corrosion resistant as compared to HAP coating in the simulated body fluid.
Research limitations/implications
It has been concluded that corrosion resistance of HAP as well as composite coating is because of the desirable microstructural changes such as low porosity high microhardness and flat splat structures in coatings as compared to bare specimen.
Practical implications
This study is useful in the selection of biomedical implants.
Social implications
This study is useful in the field of biomaterials.
Originality/value
No reported literature on corrosion behavior of HAP+ 25%- TiO2 has been noted till now using flame spray technique. The main focus of the study is to investigate the HAP as well as composite coatings for biomedical applications.
Details
Keywords
Zn has been attracting increasing attention with its biological compatibility property as a degradable implant material. Besides mechanical properties, especially for bone implant…
Abstract
Purpose
Zn has been attracting increasing attention with its biological compatibility property as a degradable implant material. Besides mechanical properties, especially for bone implant applications, wear resistance is a crucial mechanical property. The purpose of this study is to investigate HPTed Zn samples’ tribological behavior under dry and simulated body fluid (SBF) lubrication conditions.
Design/methodology/approach
Pure Zn powders were consolidated via the high-pressure torsion (HPT) method with 1, 5 and 10 rotations. Cast pure Zn samples were used as the control group. The wear behavior of pure Zn samples was investigated under dry and SBF lubrication conditions with a ball-on testing method. The wear tracks were observed with a mechanical profilometer and scanning electron microscope (SEM).
Findings
The application of HPT not only improved the mechanical strength and degradation performance but also improved wear resistance. However, tests with SBF resulted in higher wear rates. Besides, SBF significantly masked the positive effect of HPT on the coefficient of friction (COF). Although with SBF tests, 10 HPT rotation samples resulted in the lowest wear width and volume.
Originality/value
The main originality of this study is to reveal the HPT process and SBF effects on the tribological behavior of pure Zn to observe their potential usage for bone implant applications.
Details
Keywords
Murtdha Adhab Siyah, Rostam Moradian and Iraj Manouchehri
SS316L alloy used in biomedical application and the alloy have Fe, Cr and Ni elements and release this ion into the human body causing dangerous effects for the human body, and…
Abstract
Purpose
SS316L alloy used in biomedical application and the alloy have Fe, Cr and Ni elements and release this ion into the human body causing dangerous effects for the human body, and make the SS316L, which is used as surgical implant failure in short time in biomedical application. This study aims to use Ti6Al4V as coating for SS316L alloy to make it have bio inert surface, and modified the surface alloy for biomedical application from another part in this study, we want to decrease the corrosion rate for SS316L in simulated body surface Ringer solution.
Design/methodology/approach
The morphology, roughness, XRD of the coating, potential polarization and electrochemical impedance spectra investigation to study the effect of Ti6Al4V coating on corrosion behaviors of SS316L in the Ringer solution.
Findings
This study discusses the modification of SS316L surfaces by using Ti6Al4V radio magnetron frequency sputtering techniques, the results of the EIS and polarization of SS316L in Ringer’s solution at 37°C shows that improved resistance against corrosive ions for all the samples coating with Ti6Al4V and especially with a coating have a thickness of 850 nm at a sputtering power of 150 W.
Research limitations/implications
Polarization and electro chemical impedance spectra were assessed to investigate the effect of Ti6Al4V coating on corrosion behaviors of SS316L alloy in the Ringer solution.
Practical implications
This study discussed the modification SS316L surfaces by using Ti6Al4V radio magnetron frequency sputtering techniques. The results of the EIS and polarization of SS316L in Ringer’s solution at 37°C improved resistance against corrosive ions for all the samples coating with a Ti6Al4V and specificity with the coating sample have a thickness 850 nm at a sputtering power of 150 W.
Social implications
The goal of this study to modification SS316L alloy surface by using Ti6al4V RF Sputtering to give the SS316L alloy more resistance for biocorrosion.
Originality/value
In this research, Ti6Al4V RF sputtering as a coating for SS316L, study the bio corrosion behaviors in Simulated body fluid Ringer solution and investigation the corrosion by using EIS analysis.
Details
Keywords
Yajing Zhang, Guian Shi, Yue Liu, Qin Wu, Wenhao Yang and Linliang Zhao
The purpose of this study is to develop new biodegradable magnesium alloy. Magnesium possesses similar mechanical properties to natural bone; it is a potential candidate for…
Abstract
Purpose
The purpose of this study is to develop new biodegradable magnesium alloy. Magnesium possesses similar mechanical properties to natural bone; it is a potential candidate for resorbable implant applications. However, in physiological conditions, the degradation rate of Mg is too high to be used as an implant material.
Design/methodology/approach
In this research, Zn, Sr and Ca were chosen as alloying elements; a coating was deposited on the MgZnSrCa alloy surface by means of a biomimetic technique. The corrosion rates of the uncoated and coated specimens were tested in simulated body fluid.
Findings
The hydroxyapatite coating formed on the MgZnSrCa alloy surface and the hydroxyapatite layer markedly decreased the corrosion rate of the MgZnSrCa alloy.
Originality/value
A homogenous hydroxyapatite coating was formed on the MgZnSrCa alloy surface by using a biomimetic coating technique. The biomimetic hydroxyapatite coating markedly reduced the corrosion rate of the MgZnSrCa alloy, and the largest decrease in wastage rate was 44 per cent.
Details
Keywords
Peipei Lu, Meiping Wu, Xin Liu, Xiaojin Miao and Weipeng Duan
Ti6Al4V is a widely used metal for biomedical application due to its excellent corrosion resistance, biocompatibility and mechanical strength. However, a coupling reaction of…
Abstract
Purpose
Ti6Al4V is a widely used metal for biomedical application due to its excellent corrosion resistance, biocompatibility and mechanical strength. However, a coupling reaction of friction and corrosion is the critical reason for the failure of implants during the long-term service in human body, shortening the life expectancy and clinical efficacy of prosthesis. Hence, this study aims to find a feasible approach to modify the service performances of Ti6Al4V.
Design/methodology/approach
Selective laser melting (SLM), as one of the emerging metal-based additive manufacturing (AM) technologies is capable for fabricating patient-specific personalized customization of artificial prosthesis joints, owing to its high adaptability for complex structures. This study is concerned with the tribocorrosion behavior of SLM fabricated Ti6Al4V substrate enhanced by laser rescanning and graphene oxide (GO) mixing. The tribocorrosion tests were performed on a ball-on-plate configuration under the medium of simulated body fluid (SBF). Moreover, the surface morphologies, microstructures, microhardness and contact angle tests were used to further reveal the in-situ strengthening mechanism of GO/Ti6Al4V nanocomposites.
Findings
The results suggest that the strengthening method of GO mixing and laser rescanning shows its capability to enhance the wear resistance of Ti6Al4V by improving surface morphologies and promoting the generation of hard phases. The wear volume of R-GO/Ti6Al4V is 5.1 × 10−2 mm3, which is 25.0% lower than that of pure SLM-produced Ti6Al4V. Moreover, a wear-accelerated corrosion of the Ti6Al4V occurs in SBF medium, leading to a drop in the open circuit potential (OCP), but R-GO/Ti6Al4V has the lowest tendency to corrosion. Compared to that of pure Ti6Al4V, the microhardness and contact angle of R-GO/Ti6Al4V were increased by 32.89% and 32.60%, respectively.
Originality/value
Previous investigations related to SLM of Ti6Al4V have focused on improving its density, friction and mechanical performances by process optimization or mixing reinforcement phase. The authors innovatively found that the combination of laser rescanning and GO mixing can synergistically enhance the tribocorrosion properties of titanium alloy, which is a feasible way to prolong the service lives of medical implants.
Details
Keywords
Seyed Mohammad Hossein Mousavian, Seyed Hadi Tabaian and Mohammadhassan Badihehaghdam
The effect of zirconium, zinc, calcium and rare earth group as the alloying elements on mechanical properties and corrosion behavior of magnesium alloys was investigated in the…
Abstract
Purpose
The effect of zirconium, zinc, calcium and rare earth group as the alloying elements on mechanical properties and corrosion behavior of magnesium alloys was investigated in the simulated body fluid.
Design/methodology/approach
Pure magnesium and the alloying elements were melted and zirconium was finally added to obtain different alloys. The castings were annealed and some samples were aged heat treated. X-ray fluorescence was used for the elemental analysis and LSV was used for electrochemical corrosion evaluations.
Findings
Results showed that corrosion resistance decreases with increasing zirconium content. The lowest corrosion rate was obtained for the samples containing 0.3% and 0.45% of Zr from annealed and aging heat-treated samples, respectively. Yield stress enhances with increasing the zirconium content and degrades by the aging heat treatment.
Originality/value
These alloys were studied for the first time. Effect of casting without using protective flux and vacuum furnaces. Effect of annealing at 440°C for 2 h and artificial aging at 200°C for 16 h. Alloy’s electrochemical behavior on the body’s simulation environment has been investigated. Improvement of mechanical properties after annealing heat treatment by high zirconium percentage.