Search results
1 – 10 of 726L.A. Krishna, A.R. Veerappan and S. Shanmugam
Precise assessment of elastic stress is required in the field of fracture mechanics. While bending a straight pipe, the deformation of the circular cross section out of roundness…
Abstract
Purpose
Precise assessment of elastic stress is required in the field of fracture mechanics. While bending a straight pipe, the deformation of the circular cross section out of roundness called ovality and thinning are foreseeable. The ovality has a significant effect on the structural integrity of the pipe. The sole objective of this paper is to provide new analytical solutions to predict accurate elastic stress distribution at the median section of the U-bend, with deformities such as ovality and thinning when subjected to in-plane closing moment by using elastic finite element analysis.
Design/methodology/approach
The quarter model of the U bend has been analysed by using ABAQUS. The elastic stress components included in this analysis are longitudinal bending stress, longitudinal membrane stress, circumferential bending stress and circumferential membrane stress. Based on finite element results, analytical elastic stress solutions are also provided for both longitudinal and circumferential stresses by using these stress components.
Findings
As the ovality has a significant effect, it is further included in the analytical solution. The thinning is not included since it has very little effect. Analytical stress solutions are provided for a wide range of bend characteristics to include ovality, mean radius and thickness.
Originality/value
Significance of ovality and thinning on elastic stress of U-bend has not been reported in the existing literature.
Details
Keywords
Saravanan G., Shanmugam S. and Veerappan A.R.
This paper aims to determine the regression rate using wax fuels for three different grain configurations and find a suitable grain port design for hybrid rocket application.
Abstract
Purpose
This paper aims to determine the regression rate using wax fuels for three different grain configurations and find a suitable grain port design for hybrid rocket application.
Design/methodology/approach
The design methodology of this work includes different grain port designs and subsequent selection of solid fuels for a suitable hybrid rocket application. A square, a cylindrical and a five-point star grained were designed and prepared using paraffin and beeswax fuels. They were tested in a laboratory-scale rocket with gaseous oxygen to study the effectiveness of solid fuels on these grain structures. The regression rate by static fire testing of these wax fuels was analyzed.
Findings
Beeswax performance is better than that of paraffin wax fuel for all three designs, and the five-slotted star fuel port grain attained the best performance. Beeswax fuel attained an average regression rate ≈of 1.35 mm/s as a function of oxidizer mass flux Gox ≈ 111.8 kg/m2 s and for paraffin wax 1.199 mm/s at Gox ≈ 121 kg/m2 s with gaseous oxygen. The local regression rates of fuels increased in the range of 0.93–1.194 mm/s at oxidizer mass flux range of 98–131 kg/m2 s for cylindrical grain, 0.99–1.21 mm/s at oxidizer mass flux range of 96–129 kg/m2s for square grain and 1.12–1.35 mm/s at oxidizer mass flux range of 91–126 kg/m2 s for a star grain. A complete set of the regression rate formulas is obtained for all three-grain designs as a function of oxidizer flux rate.
Research limitations/implications
The experiment has been performed for a lower chamber pressure up to 10 bar.
Originality/value
Different grain configurations were designed according to the required dimension of the combustion chamber, injector and exhaust nozzle of the design of a lab-scale hybrid rocket, and input parameters were selected and analyzed.
Details
Keywords
Silambarasan R., Veerappan A.R. and Shanmugam S.
The purpose of this study is to investigate the effect of structural deformations and bend angle on plastic collapse load of pipe bends under an in-plane closing bending moment…
Abstract
Purpose
The purpose of this study is to investigate the effect of structural deformations and bend angle on plastic collapse load of pipe bends under an in-plane closing bending moment (IPCM). A large strain formulation of three-dimensional non-linear finite element analysis was performed using an elastic perfectly plastic material. A unified mathematical solution was proposed to estimate the collapse load of pipe bends subjected to IPCM for the considered range of bend characteristics.
Design/methodology/approach
ABAQUS was used to create one half of the pipe bend model due to its symmetry on the longitudinal axis. Structural deformations, i.e. ovality (Co) and thinning (Ct) varied from 0% to 20% in 5% steps while the bend angle (ø) varied from 30° to 180° in steps of 30°.
Findings
The plastic collapse load decreases as the bend angle increase for all pipe bend models. A remarkable effect on the collapse load was observed for bend angles between 30° and 120° beyond which a decline was noticed. Ovality had a significant effect on the collapse load with this effect decreasing as the bend angle increased. The combined effect of thinning and bend angle was minimal for the considered models and the maximum per cent variation in collapse load was 5.76% for small bend angles and bend radius pipe bends and less than 2% for other cases.
Originality/value
The effect of structural deformations and bend angle on collapse load of pipe bends exposed to IPCM has been not studied in the existing literature.
Details
Keywords
Krishna LA, Veerappan AR and Shanmugam S
Elastic stress solutions are required in the field of fracture mechanics and the analysis of creep failure. The published precise elastic solutions are not addressing the…
Abstract
Purpose
Elastic stress solutions are required in the field of fracture mechanics and the analysis of creep failure. The published precise elastic solutions are not addressing the influence of the manufacturing process induced, inevitable cross sectional deviations called ovality and thinning. The influence of ovality on plastic limit and collapse loads are reported in literature. Hence, it is important to study the combined effect of ovality and thinning on elastic stresses of bends.
Design/methodology/approach
This paper relies on elastic finite element evolutions of stress components– longitudinal membrane stress, longitudinal bending stress, circumferential membrane stress and circumferential bending stresses. Based on the results, the coefficients for the equations are also obtained through the regression analysis.
Findings
New analytical solutions are prescribed to estimate the elastic stresses at the mid-section of the 90° very thin-walled bend with ovality and thinning, when subjected to in-plane bending moment. The ovality has significant influence on elastic stress whereas the thinning is not so. The proposed equations give an accurate estimation of elastic stresses at the mid-section of the bend with the incorporation of the parameters, namely R/rm, rm/t and ovality.
Research limitations/implications
The influence of shape imperfections, namely ovality and thinning on elastic stress of 90° very thin-walled bends having rm/t > 20, subject to in-plane bending moment is proposed.
Originality/value
The influence of shape imperfections, namely ovality and thinning, on elastic stress of 90° very thin-walled bends with rm/t > 20, subject to in-plane bending moment is proposed.
Details
Keywords
Raghuraman T., Veerappan AR. and Shanmugam S.
This paper aims to present the approximate limit pressure solutions for thin-walled shape-imperfect 90° pipe bends. Limit pressure was determined by finite element (FE) limit…
Abstract
Purpose
This paper aims to present the approximate limit pressure solutions for thin-walled shape-imperfect 90° pipe bends. Limit pressure was determined by finite element (FE) limit analysis with the consideration of small geometry change effects.
Design/methodology/approach
The limit pressure of 90° pipe bends with ovality and thinning has been evaluated by geometric linear FE approach. Internal pressure was applied to the inner surface of the FE pipe bend models. When von-Mises stress equals or just exceeds the yield strength of the material, the corresponding pressure was considered as the limit pressure for all models. The current FE methodology was evaluated by the theoretical solution which has been published in the literature.
Findings
Ovality and thinning produced a significant effect on thin-walled pipe bends. The ovality weakened pipe bend performance at any constant thinning, while thinning improved the performance of the bend portion at any constant ovality. The limit pressure of pipe bends under internal pressure increased with an increase in the bend ratio and decreased with an increase in the pipe ratio. With a simultaneous increment in bend radius and reduction in wall thickness, there was a reduction in limit pressure. A new closed-form empirical solution was proposed to evaluate limit pressure, which was validated with published experimental data.
Originality/value
The influences of structural deformation (ovality and thinning) in the limit pressure analysis of 90° pipe bends have not been investigated and reported.
Details
Keywords
A. Vinothkumar, AR. Veerappan and S. Shanmugam
The aim of this study is to ensure the structural integrity of 90° back-to-back (B2B) pipe bends by developing a closed-form numerical solution for estimating the collapse load of…
Abstract
Purpose
The aim of this study is to ensure the structural integrity of 90° back-to-back (B2B) pipe bends by developing a closed-form numerical solution for estimating the collapse load of shape distorted 90° B2B pipe bends using non-linear finite element (FE) analysis.
Design/methodology/approach
The collapse behaviour of 90° B2B pipe bends with ovality (Co) and thinning (Ct) has been evaluated by non-linear FE approach. Moment load is applied in the form of in-plane closing moment (IPCM). The current FE approach was evaluated by the numerical solution for the plastic collapse moment of pipe bends, which has been published in the literature. The collapse moments were obtained from the twice elastic slope (TES) method using the moment-rotation curve of every individual model.
Findings
The implication of Ct/Cth on collapse load is found to be highly insignificant in terms of increasing bend radius and Co. Co weakens the geometry, and its effect on the collapse load is substantial. A closed-form numerical solution has been proposed to calculate the collapse load of 90° B2B pipe bend with shape imperfections.
Originality/value
The implications of shape distortion (Co and Ct) in the failure analysis (collapse load) of 90° B2B pipe bends has not been investigated and reported.
Details
Keywords
R. Silambarasan, A.R. Veerappan and S. Shanmugam
The purpose of this paper is to quantify the combined effect of shape distortion and bend angle on the collapse loads of pipe bends exposed to internal pressure and in-plane…
Abstract
Purpose
The purpose of this paper is to quantify the combined effect of shape distortion and bend angle on the collapse loads of pipe bends exposed to internal pressure and in-plane closing bending moment. Non-linear finite element analysis with large displacement theory was performed considering the pipe bend material to be elastic perfectly plastic.
Design/methodology/approach
One half of the pipe bend model was built in ABAQUS. Shape distortion, namely, ovality (Co) and thinning (Ct), were each varied from 0% to 20% in steps of 5% and bend angle was varied from 30° to 180° in steps of 30°.
Findings
The findings show that ovality has a significant impact on collapse load. The effect of ovality decreases with an increase in bend angle for small thickness. The opposite effect was observed for large thickness pipe bends. The influence of ovality was more for higher bend angles. Ovality impact was almost negligible at certain internal pressure denoted as nullifying point (NP). The latter increased with an increase in pipe bend thickness and decreased with increase in pipe bend radius. For small bend angles one NP was observed where ovality impact is negligible and beyond this point the ovality effect increased. Two NPs were observed for large bend angles and ovality effect was maximum between the two NPs. Thinning yielded a minimal effect on collapse load except for small bend angles and bend radii. The influence of internal pressure on thinning was also negligible.
Originality/value
Influence of shape distortions and bend angle on collapse load of pipe bend exposed to internal pressure and in-plane closing bending has been not revealed in existing literature.
Details
Keywords
Naveenkumar R., Shanmugam S. and Veerappan AR
The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar…
Abstract
Purpose
The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar still (DSSS).
Design/methodology/approach
Modified single basin DSSS integrated with solar operated vacuum fan and external water cooled condenser was fabricated using aluminium material. During sunny season, experimental investigations have been performed in both conventional and modified DSSS at a basin water depth of 3, 6, 9 and 12 cm. Production rate and cumulative distillate yield obtained in traditional and developed DSSS at different water depths were compared and best water depth to attain the maximum productivity and cumulative distillate yield was found out.
Findings
Results indicated that both traditional and modified double SS produced maximum yield at the minimum water depth of 3 cm. Cumulative distillate yield of the developed SS was 16.39%, 18.86%, 15.22% and 17.07% higher than traditional at water depths of 3, 6, 9 and 12 cm, respectively. Cumulative distillate yield of the developed SS at 3 cm water depth was 73.17% higher than that of the traditional SS at 12 cm depth.
Originality/value
Performance evaluation of DSSS at various water depths by integrating the combined solar operated Vacuum fan and external Condenser.
Details
Keywords
Saravanan G., Shanmugam S. and A.R. Veerappan
The purpose of this study is to investigate the physical, chemical and thermal characteristics of paraffin-blended fuels to determine their suitability as fuel in hybrid rockets.
Abstract
Purpose
The purpose of this study is to investigate the physical, chemical and thermal characteristics of paraffin-blended fuels to determine their suitability as fuel in hybrid rockets.
Design/methodology/approach
Wax fuels are viable and efficient alternatives to conventional rocket fuels, having excellent structural strength and thermal and mechanical properties. The authors report a study of the morphological, chemical and thermal properties of paraffin wax with and without additives for use as fuels in hybrid rockets. Scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy were used for the morphological and chemical characterizations of the fuel blends. The thermal stability and combustion characteristics were assessed under an atmosphere of nitrogen by the simultaneous application of thermogravimetry and differential scanning calorimetry techniques.
Findings
The melting temperatures for pure paraffin and other formulations were around 61°C as seen in differential scanning calorimetry experiments. Variations in the compositions of monoesters, n-alkanes, fatty acids, carboxylic acids methyl and hydroxyl esters in the fuel samples were assessed using Fourier transform infrared spectroscopy. The assessment criterion was chosen as the relative content of carbonyl groups, and the ratio of the stretching vibration of the C–C bonds to the deformation vibration of the aliphatic carbon–hydrogen bonds was taken as the basis for the quantitative calibration. The crystal phases identified by X-ray diffraction were used to identify nonlinear chemicals and alkane lengths. Scanning electron microscopy validated homogeneity in the paraffin-blended samples.
Originality/value
This study presents the thermal stability and other relevant characteristics of fuel formulations comprising unconventional blends.
Details
Keywords
Venkatesan V., Shanmugam S. and Veerappan A.R.
This paper aims to study the influence of significant design parameters of elephant trunk soft pneumatic actuator and presents maximum optimized geometric structure of the…
Abstract
Purpose
This paper aims to study the influence of significant design parameters of elephant trunk soft pneumatic actuator and presents maximum optimized geometric structure of the actuator using finite element method.
Design/methodology/approach
Analysis of variance (ANOVA) is used to examine the influence of significant parameters such as wall thickness, bottom layer thickness and gap between adjacent chambers on the performance of the soft actuator. The most influencing parameter is found to be the wall thickness compared to the gap between adjacent chambers and bottom layer thickness.
Findings
The optimization of bending moment recommends a wall thickness of 1.5 mm, a gap between the adjacent channels of 1.5 mm and bottom layer thickness of 4 mm for the actuator. The theoretical expression of mechanical parameters is described.
Originality/value
The design optimization of elephant trunk shaped soft actuator with respect to bending angle and force analysis has not been investigated.
Details