Search results
1 – 3 of 3Hanene Rouabeh, Sami Gomri and Mohamed Masmoudi
The purpose of this paper is to design and validate an electronic nose (E-nose) prototype using commercially available metal oxide gas sensors (MOX). This prototype has a sensor…
Abstract
Purpose
The purpose of this paper is to design and validate an electronic nose (E-nose) prototype using commercially available metal oxide gas sensors (MOX). This prototype has a sensor array board that integrates eight different MOX gas sensors to handle multi-purpose applications. The number of sensors can be adapted to match different requirements and classification cases. The paper presents the validation of this E-nose prototype when used to identify three gas samples, namely, alcohol, butane and cigarette smoke. At the same time, it discusses the discriminative abilities of the prototype for the identification of alcohol, acetone and a mixture of them. In this respect, the selection of the appropriate type and number of gas sensors, as well as obtaining excellent discriminative abilities with a miniaturized design and minimal computation time, are all drivers for such implementation.
Design/methodology/approach
The suggested prototype contains two main parts: hardware (low-cost components) and software (Machine Learning). An interconnection printed circuit board, a Raspberry Pi and a sensor chamber with the sensor array board make up the first part. Eight sensors were put to the test to see how effective and feasible they were for the classification task at hand, and then the bare minimum of sensors was chosen. The second part consists of machine learning algorithms designed to ensure data acquisition and processing. These algorithms include feature extraction, dimensionality reduction and classification. To perform the classification task, two features taken from the sensors’ transient response were used.
Findings
Results reveal that the system presents high discriminative ability. The K-nearest neighbor (KNN) and support vector machine radial basis function based (SVM-RBF) classifiers both achieved 97.81% and 98.44% mean accuracy, respectively. These results were obtained after data dimensionality reduction using linear discriminant analysis, which is more effective in terms of discrimination power than principal component analysis. A repeated stratified K-cross validation was used to train and test five different machine learning classifiers. The classifiers were each tested on sets of data to determine their accuracy. The SVM-RBF model had high, stable and consistent accuracy over many repeats and different data splits. The total execution time for detection and identification is about 10 s.
Originality/value
Using information extracted from transient response of the sensors, the system proved to be able to accurately classify the gas types only in three out of the eight MQ-X gas sensors. The training and validation results of the SVM-RBF classifier show a good bias-variance trade-off. This proves that the two transient features are sufficiently efficient for this classification purpose. Moreover, all data processing tasks are performed by the Raspberry Pi, which shows real-time data processing with miniaturized architecture and low prices.
Details
Keywords
Rabeb Faleh, Sami Gomri, Mehdi Othman, Khalifa Aguir and Abdennaceur Kachouri
In this paper, a novel hybrid approach aimed at solving the problem of cross-selectivity of gases in electronic nose (E-nose) using the combination classifiers of support vector…
Abstract
Purpose
In this paper, a novel hybrid approach aimed at solving the problem of cross-selectivity of gases in electronic nose (E-nose) using the combination classifiers of support vector machine (SVM) and k-nearest neighbors (KNN) methods was proposed.
Design/methodology/approach
First, three WO3 sensors E-nose system was used for data acquisition to detect three gases, namely, ozone, ethanol and acetone. Then, two transient parameters, derivate and integral, were extracted for each gas response. Next, the principal component analysis (PCA) was been applied to extract the most relevant sensor data and dimensionality reduction. The new coordinates calculated by PCA were used as inputs for classification by the SVM method. Finally, the classification achieved by the KNN method was carried out to calculate only the support vectors (SVs), not all the data.
Findings
This work has proved that the proposed fusion method led to the highest classification rate (100 per cent) compared to the accuracy of the individual classifiers: KNN, SVM-linear, SVM-RBF, SVM-polynomial that present, respectively, 89, 75.2, 80 and 79.9 per cent as classification rate.
Originality/value
The authors propose a fusion classifier approach to improve the classification rate. In this method, the extracted features are projected into the PCA subspace to reduce the dimensionality. Then, the obtained principal components are introduced to the SVM classifier and calculated SVs which will be used in the KNN method.
Details
Keywords
Rabeb Faleh, Sami Gomri, Khalifa Aguir and Abdennaceur Kachouri
The purpose of this paper is to deal with the classification improvement of pollutant using WO3 gases sensors. To evaluate the discrimination capacity, some experiments were…
Abstract
Purpose
The purpose of this paper is to deal with the classification improvement of pollutant using WO3 gases sensors. To evaluate the discrimination capacity, some experiments were achieved using three gases: ozone, ethanol, acetone and a mixture of ozone and ethanol via four WO3 sensors.
Design/methodology/approach
To improve the classification accuracy and enhance selectivity, some combined features that were configured through the principal component analysis were used. First, evaluate the discrimination capacity; some experiments were performed using three gases: ozone, ethanol, acetone and a mixture of ozone and ethanol, via four WO3 sensors. To this end, three features that are derivate, integral and the time corresponding to the peak derivate have been extracted from each transient sensor response according to four WO3 gas sensors used. Then these extracted parameters were used in a combined array.
Findings
The results show that the proposed feature extraction method could extract robust information. The Extreme Learning Machine (ELM) was used to identify the studied gases. In addition, ELM was compared with the Support Vector Machine (SVM). The experimental results prove the superiority of the combined features method in our E-nose application, as this method achieves the highest classification rate of 90% using the ELM and 93.03% using the SVM based on Radial Basis Kernel Function SVM-RBF.
Originality/value
Combined features have been configured from transient response to improve the classification accuracy. The achieved results show that the proposed feature extraction method could extract robust information. The ELM and SVM were used to identify the studied gases.
Details