Search results
1 – 10 of 22Jia Wang, Haiyang Sun, Ding Chen, Yongjun Huang, Tao Dong, Hai Li, Lingnan Shen and Ziyu Yang
The paper aims to accurately measure the key motion parameters, such as velocity, azimuth and pitch angle, of the small flying object with a non-uniform curve trajectory. It…
Abstract
Purpose
The paper aims to accurately measure the key motion parameters, such as velocity, azimuth and pitch angle, of the small flying object with a non-uniform curve trajectory. It proposes a measurement method and its calculation model of non-uniform curve trajectory using a photoelectric sensor array.
Design/methodology/approach
First, the basic composition of the measurement system and mechanism of photoelectric sensor array are described, respectively. Second, a non-uniform curve mathematical measurement model is constructed differently from the traditional linear trajectory, taking into account the influence of gravity and air resistance. Third, the measurement error of the system is analyzed through numerical simulation. Finally, the accuracy and feasibility of the approach are verified by live-ammunition experiments.
Findings
The results show that the systematic error of the hitting point coordinates can be reduced by 9% compared to the traditional linear measurement model. Consequently, this method can meet the higher measurement requirement for the key motion parameters of the small flying object under the non-uniform curve trajectory. Research limitations/implications (if applicable)- although the approach itself is generalizable, the method is unable to detect the motion parameters of multiple small flying objects.
Research limitations/implications
Although the approach itself is generalizable, the method is unable to detect the motion parameters of the multiple small flying objects.
Practical implications
It is evident that the proposed non-uniform curve measurement model is more precise in quantifying the essential characteristics of the small flying object, particularly in consideration of the environmental conditions.
Social implications
The precise measurement of the key motion parameters of the small flying object can facilitate the enhancement of the protective performance of protective materials.
Originality/value
A novel approach to measurement is proposed, which differs from the conventional uniform trajectory model. To this end, the space construction of the photoelectric sensor array is optimized. The number of the sensors is revised.
Details
Keywords
Zhaoyang Sun, Haiyang Zhou, Tianchen Yang, Kun Wang and Yubo Hou
The shape of a product plays a crucial role in shaping consumer behavior. Despite the voluminous research on factors influencing consumers’ shape preferences, there remains a…
Abstract
Purpose
The shape of a product plays a crucial role in shaping consumer behavior. Despite the voluminous research on factors influencing consumers’ shape preferences, there remains a limited understanding of how the busy mindset, a mentality increasingly emphasized by marketing campaigns, works. This study aims to fill this gap by exploring the relationship between a busy mindset and the preference for angular-shaped versus circular-shaped products and brand logos.
Design/methodology/approach
This research consists of seven experimental studies using various shape stimuli, distinct manipulations of busy mindset, different assessments of shape preference and samples drawn from multiple countries.
Findings
The findings reveal that a busy mindset leads to a preference for angular shapes over circular ones by amplifying the need for uniqueness. In addition, these effects are attenuated when products are scarce.
Originality/value
This research represents one of the pioneering efforts to study the role of a busy mindset on consumers’ aesthetic preferences. Beyond yielding insights for practitioners into visual marketing, this research contributes to the theories on the busy mindset and shape preference.
Details
Keywords
Yuan Sun, Rong-An Shang, Haiyang Cao, Hongyu Jiang, Klaus Boehnke and Jindi Fu
Enterprise social media can be the organizational transactive memory in which the knowledge dialogue provides users with the metaknowledge to support knowledge transfer. The…
Abstract
Purpose
Enterprise social media can be the organizational transactive memory in which the knowledge dialogue provides users with the metaknowledge to support knowledge transfer. The purpose of this study is to examine a mediation model to show how perceived critical mass, openness and affiliation climate affect organizational knowledge transfer through the mediation of improving the metaknowledge of who knows what and whom.
Design/methodology/approach
To test the mediation model and corresponding hypotheses, this study employs structural equation modeling analysis using 264 valid questionnaires.
Findings
The study found the two mediators fully explained the effects of the three preconditions on knowledge transfer.
Originality/value
These results help us to better understand the benefits of enterprise social media and the functions of transactive memory in organizations.
Details
Keywords
Limin Jia, Xiyuan Chen, Xiaoping Ma, Qing Xu, Haiyang Yu, Wei Sun, Weiming Luo, Bolin Gao and Honghui Dong
This paper aims to define the concept, composition, connotation, functional technology and development path of autonomous transportation systems (ATS) and provide theoretical…
Abstract
Purpose
This paper aims to define the concept, composition, connotation, functional technology and development path of autonomous transportation systems (ATS) and provide theoretical basis and support for the construction and development of ATS.
Design/methodology/approach
The research analyzes the concept and connotation of ATS, studies the composition and structure of ATS, sorts out pillar function technology system including perception, digitization, interoperability, computing and integration in ATS hierarchically, and looks forward to the future development path of ATS from human participation and systems intelligence.
Findings
This paper puts forward the concept, composition, connotation and structure of ATS, proposes the pillar functional technology system of ATS and proposes four development stages of ATS.
Originality/value
The research can provide a theoretical and scientific basis for the high-quality, efficient, orderly construction and development of ATS.
Details
Keywords
Haiyang Gu, Kaiqi Liu, Xingyi Huang, Quansheng Chen, Yanhui Sun and Chin Ping Tan
Parallel factor analysis (PARAFAC) coupled with support-vector machine (SVM) was carried out to identify and discriminate between the fluorescence spectroscopies of coconut water…
Abstract
Purpose
Parallel factor analysis (PARAFAC) coupled with support-vector machine (SVM) was carried out to identify and discriminate between the fluorescence spectroscopies of coconut water brands.
Design/methodology/approach
PARAFAC was applied to reduce three-dimensional data of excitation emission matrix (EEM) to two-dimensional data. SVM was applied to discriminate between six commercial coconut water brands in this study. The three largest variation data from fluorescence spectroscopy were extracted using the PARAFAC method as the input data of SVM classifiers.
Findings
The discrimination results of the six commercial coconut water brands were achieved by three SVM methods (Ga-SVM, PSO-SVM and Grid-SVM). The best classification accuracies were 100.00%, 96.43% and 94.64% for the training set, test set and CV accuracy.
Originality/value
The above results indicate that fluorescence spectroscopy combined with PARAFAC and SVM methods proved to be a simple and rapid detection method for coconut water and perhaps other beverages.
Details
Keywords
Mengjuan Yin, Wenping Liang, Qiang Miao, Shiwei Zuo, Haiyang Yu and Jiale Cheng
This study aims to the service life of TA15 alloy by solving the problem of the binding force between the matrix and AlTiSiN coating. The effect of a plasma nitriding (PN…
Abstract
Purpose
This study aims to the service life of TA15 alloy by solving the problem of the binding force between the matrix and AlTiSiN coating. The effect of a plasma nitriding (PN) interlayer on the magnetron-sputtered AlTiSiN coating was also investigated in detail.
Design/methodology/approach
The double-glow plasma alloying (DGPA) and magnetron sputtering (MS) techniques were combined as a new approach to realize a bilayer on TA15 consisting of an AlTiSiN layer with a PN interlayer. A TiN interlayer was formed via co-diffusion during the PN conducted at 1050°C for 3 h.
Findings
The PN interlayer can effectively improve the adhesion between coating and matrix; the PN/AlTiSiN coating presented excellent adhesion (80.1 N) and anti-wear property with a nano-hardness of 18.62 GPa. The resulting three-dimensional wear-track morphology exhibited a shallow depth and a narrow width.
Originality/value
The novel combination of the DGPA and MS technologies, using an infiltration layer rather than a coating one as the intermediate layer, can effectively enhance the adhesion between AlTiSiN coating and TA15 matrix. Meanwhile, the gradient layer can effectively improve both surface bearing and wear resistance.
Details
Keywords
Haiyang Hu, Yu Wang, Chenchen Lian and Peiyan Wang
In this paper, an attempt is made to obtain buckling loads, ultimate bearing capacity and other required structural characteristics of grid structure panels. The numerical method…
Abstract
Purpose
In this paper, an attempt is made to obtain buckling loads, ultimate bearing capacity and other required structural characteristics of grid structure panels. The numerical method for post-buckling behavior analysis of panels involving multiple invisible damages is also presented.
Design/methodology/approach
In this paper, two bidirectional stiffened composite panels are manufactured and tested. Multiple discrete invisible damages are introduced in different positions of the stringers, and the experimental and simulation investigation of buckling and post-buckling were carried out on the damaged stiffened panels.
Findings
The simulation load–displacement curves are compared with the experimental results, and it is found that the simulation model can well predict the occurrence of buckling and failure loads. The strain curve shows that the rate of strain change at the damaged site is greater than that at the undamaged site, which reflects that the debond is more likely occurred at the damaged site. The simulation verifies that the panel is usually crushed due to matrix compression and fiber–matrix shear.
Originality/value
In this paper, post-buckling tests and numerical simulations of bidirectional stiffened composite panels with impact damage were carried out. Two panels with four longitudinal stringers and two transverse stringers were manufactured and tested. The buckling and post-buckling characteristics of the grid structure are obtained, and the failure mechanism of the structure is explained. This is helpful for the design of wall panel structure.
Details
Keywords
Haiyang Guo, Yun Bai, Qianyun Hu, Huangrui Zhuang and Xujie Feng
To evacuate passengers arriving at intercity railway stations efficiently, metros and intercity railways usually share the same station or have stations close to each other. When…
Abstract
Purpose
To evacuate passengers arriving at intercity railway stations efficiently, metros and intercity railways usually share the same station or have stations close to each other. When intercity trains arrive intensively, a great number of passengers will burst into the metro station connecting with the intercity railway station within a short period, while the number of passengers will decrease substantially when intercity trains arrive sparsely. The metro timetables with regular headway currently adopted in real-world operations cannot handle the injected passenger demand properly. Timetable optimization of metro lines connecting with intercity railway stations is essential to improve service quality.
Design/methodology/approach
Based on arrival times of intercity trains and the entire process for passengers transferring from railway to metro, this paper develops a mathematical model to characterize the time-varying demand of passengers arriving at the platform of a metro station connecting with an intercity railway station. Provided the time-varying passenger demand and capacity of metro trains, a timetable model to optimize train departure time of a bi-direction metro line where an intermediate station connects with an intercity railway station is proposed. The objective is to minimize waiting time of passengers at the connecting station. The proposed timetable model is solved by an adaptive large neighborhood search algorithm.
Findings
Real-world case studies show that the prediction accuracy of the proposed model on passenger demand at the connecting station is higher than 90%, and the timetable model can reduce waiting time of passengers at the connecting station by 28.47% which is increased by 5% approximately than the calculation results of the generic algorithm.
Originality/value
This paper puts forward a model to predict the number of passengers arriving at the platform of connection stations via analyzing the entire process for passengers transferring from intercity trains to metros. Also, a timetable optimization model aiming at minimizing passenger waiting time of a metro line where an intermediate station is connected to an intercity railway station is proposed.
Details
Keywords
Cheng Lei, Haiyang Mao, Yudong Yang, Wen Ou, Chenyang Xue, Zong Yao, Anjie Ming, Weibing Wang, Ling Wang, Jiandong Hu and Jijun Xiong
Thermopile infrared (IR) detectors are one of the most important IR devices. Considering that the surface area of conventional four-end-beam (FEB)-based thermopile devices cannot…
Abstract
Purpose
Thermopile infrared (IR) detectors are one of the most important IR devices. Considering that the surface area of conventional four-end-beam (FEB)-based thermopile devices cannot be effectively used and the performance of this type of devices is relatively low, this paper aims to present a double-end-beam (DEB)-based thermopile device with high duty cycle and performance. The paper aims to discuss these issues.
Design/methodology/approach
Numerical analysis was conducted to show the advantages of the DEB-based thermopile devices.
Findings
Structural size of the DEB-based thermopiles may be further scaled down and maintain relatively higher responsivity and detectivity when compared with the FEB-based thermopiles. The authors characterized the thermoelectric properties of the device proposed in this paper, which achieves a responsivity of 1,151.14 V/W, a detectivity of 4.15 × 108 cm Hz1/2/W and a response time of 14.46 ms sensor based on DEB structure.
Orginality/value
The paper proposed a micro electro mechanical systems (MEMS) thermopile infrared sensor based on double-end-beam structure.
Details