Search results
1 – 7 of 7Hayet Soltani, Jamila Taleb, Fatma Ben Hamadou and Mouna Boujelbène-Abbes
This study investigates clean energy, commodities, green bonds and environmental, social and governance (ESG) index prices forecasting and assesses the predictive performance of…
Abstract
Purpose
This study investigates clean energy, commodities, green bonds and environmental, social and governance (ESG) index prices forecasting and assesses the predictive performance of various factors on these asset prices, used for the development of a robust forecasting support decision model using machine learning (ML) techniques. More specifically, we explore the impact of the financial stress on forecasting price.
Design/methodology/approach
We utilize feature selection techniques to evaluate the predictive efficacy of various factors on asset prices. Moreover, we have developed a forecasting model for these asset prices by assessing the accuracy of two ML models: specifically, the deep learning long short-term memory (LSTM) neural networks and the extreme gradient boosting (XGBoost) model. To check the robustness of the study results, the authors referred to bootstrap linear regression as an alternative traditional method for forecasting green asset prices.
Findings
The results highlight the significance of financial stress in enhancing price forecast accuracy, with the financial stress index (FSI) and panic index (PI) emerging as primary determinants. In terms of the forecasting model's accuracy, our analysis reveals that the LSTM outperformed the XGBoost model, establishing itself as the most efficient algorithm among the two tested.
Practical implications
This research enhances comprehension, which is valuable for both investors and policymakers seeking improved price forecasting through the utilization of a predictive model.
Originality/value
To the authors' best knowledge, this marks the inaugural attempt to construct a multivariate forecasting model. Indeed, the development of a robust forecasting model utilizing ML techniques provides practical value as a decision support tool for shaping investment strategies.
Details
Keywords
Hayet Soltani, Jamila Taleb and Mouna Boujelbène Abbes
This paper aims to analyze the connectedness between Gulf Cooperation Council (GCC) stock market index and cryptocurrencies. It investigates the relevant impact of RavenPack COVID…
Abstract
Purpose
This paper aims to analyze the connectedness between Gulf Cooperation Council (GCC) stock market index and cryptocurrencies. It investigates the relevant impact of RavenPack COVID sentiment on the dynamic of stock market indices and conventional cryptocurrencies as well as their Islamic counterparts during the onset of the COVID-19 crisis.
Design/methodology/approach
The authors rely on the methodology of Diebold and Yilmaz (2012, 2014) to construct network-associated measures. Then, the wavelet coherence model was applied to explore co-movements between GCC stock markets, cryptocurrencies and RavenPack COVID sentiment. As a robustness check, the authors used the time-frequency connectedness developed by Barunik and Krehlik (2018) to verify the direction and scale connectedness among these markets.
Findings
The results illustrate the effect of COVID-19 on all cryptocurrency markets. The time variations of stock returns display stylized fact tails and volatility clustering for all return series. This stressful period increased investor pessimism and fears and generated negative emotions. The findings also highlight a high spillover of shocks between RavenPack COVID sentiment, Islamic and conventional stock return indices and cryptocurrencies. In addition, we find that RavenPack COVID sentiment is the main net transmitter of shocks for all conventional market indices and that most Islamic indices and cryptocurrencies are net receivers.
Practical implications
This study provides two main types of implications: On the one hand, it helps fund managers adjust the risk exposure of their portfolio by including stocks that significantly respond to COVID-19 sentiment and those that do not. On the other hand, the volatility mechanism and investor sentiment can be interesting for investors as it allows them to consider the dynamics of each market and thus optimize the asset portfolio allocation.
Originality/value
This finding suggests that the RavenPack COVID sentiment is a net transmitter of shocks. It is considered a prominent channel of shock spillovers during the health crisis, which confirms the behavioral contagion. This study also identifies the contribution of particular interest to fund managers and investors. In fact, it helps them design their portfolio strategy accordingly.
Details
Keywords
Yousra Trichilli, Hana Kharrat and Mouna Boujelbène Abbes
This paper assesses the co-movement between Pax gold and six fiat currencies. It also investigates the optimal time-varying hedge ratios in order to examine the properties of Pax…
Abstract
Purpose
This paper assesses the co-movement between Pax gold and six fiat currencies. It also investigates the optimal time-varying hedge ratios in order to examine the properties of Pax gold as a diversifier and hedge asset.
Design/methodology/approach
This paper examines the volatility spillover between Pax gold and fiat currencies using the framework of wavelet analysis, BEKK-GARCH models and Range DCC-GARCH. Moreover, this paper proposes to use the covariance and variance structure obtained from the new range DCC-GARCH framework to estimate the time-varying optimal hedge ratios, the optimal weighs and the hedging effectiveness.
Findings
Wavelet coherence method reveals that, at low frequency, large zone of co-movements appears for the pairs Pax gold/EUR, Pax gold/JPY and Pax gold/RUB. Further, the BEKK results show unidirectional (bidirectional) transmission effects between Pax gold and EUR, GBP, JPY and CNY (INR, RUB) fiat currencies. Moreover, the Range DCC results show that the Pax gold and the fiat currency returns are weakly correlated with low coefficients close to zero. Thus, Pax gold seems to serve as a safe haven asset against the systematic risk of fiat currency markets. In addition, the results of optimal weights show that rational investor should invest more in Pax gold and less in fiat currencies. Concerning the hedge ratios results, the findings reveal that the INR (JPY) fiat currency appears to be the most expensive (cheapest) hedge for the Pax-gold market. However, the JPY’s fiat currency appears to be the cheapest one. As for hedging effectiveness results, the authors found that hedging strategies including fiat currencies–Pax gold pairs are most likely to sharply decrease the portfolio’s risk.
Practical implications
A comprehensive understanding of the relationship between Pax Gold and fiat currencies is crucial for refining portfolio strategies involving cryptocurrencies. This research underscores the significance of grasping volatility transmissions between these currencies, providing valuable insights to guide investors in their decision-making processes. Moreover, it encourages further exploration into the interdependencies of digital currencies. Additionally, this study sheds light on effective contagion risk management, particularly during crises such as Covid-19 and the Russia–Ukraine conflict. It underscores the role of Pax Gold as a safe-haven asset and offers practical guidance for adjusting portfolios across various economic conditions. Ultimately, this research advances our comprehension of Pax Gold’s risk-return profile, positioning it as a potential hedge during periods of uncertainty, thereby contributing to the evolving literature on cryptocurrencies.
Originality/value
This study’s primary value lies in its pioneering empirical examination of the time-varying correlations and scale dependence between Pax Gold and fiat currencies. It goes beyond by determining optimal time-varying hedge ratios through the innovative Range-DCC-GARCH model, originally introduced by Molnár (2016) and distinguished by its incorporation of both low and high prices. Significantly, this analysis unfolds within the unique context of the Covid-19 pandemic and the Russian–Ukrainian conflict, marking a novel contribution to the field.
Details
Keywords
Ines Ben Salah Mahdi, Mariem Bouaziz and Mouna Boujelbène Abbes
Corporate social responsibility (CSR) and fintech have emerged as critical megatrends in the banking industry. This study aims to examine the impact of financial technology on the…
Abstract
Purpose
Corporate social responsibility (CSR) and fintech have emerged as critical megatrends in the banking industry. This study aims to examine the impact of financial technology on the relationship between CSR and banks' financial stability. Specifically, it investigates the moderating effect of fintech on the association between CSR and the financial stability of conventional banks operating in Qatar, UAE, Saudi Arabia, Kuwait, Bahrain, Jordan, Pakistan and Turkey from 2010 to 2021.
Design/methodology/approach
To achieve the authors’ objective, the authors apply Baron and Kenny's three-link model, tested with fixed and random effects regression models.
Findings
The results reveal that the development of fintech decreases banks' financial stability, whereas it promotes banks' involvement in CSR strategies. Furthermore, the findings indicate that fintech plays a moderating role in the relationship between CSR and financial stability. It positively moderates the impact of CSR on financial stability. The robustness analysis highlights the mutual reinforcement of fintech and CSR dimensions in improving the financial stability of banks. Thus, by fostering community and product responsibility, fintech could enhance the financial stability of banks.
Practical implications
Finally, the authors recommend that banks focus more on developing technological and environmentally friendly financial products.
Originality/value
This study contributes significantly by providing valuable insights for managers and policymakers seeking to improve banks' financial stability through the simultaneous adoption of new financial technology products and the strong commitment to CSR practices.
Details
Keywords
Fatma Ben Hamadou, Taicir Mezghani, Ramzi Zouari and Mouna Boujelbène-Abbes
This study aims to assess the predictive performance of various factors on Bitcoin returns, used for the development of a robust forecasting support decision model using machine…
Abstract
Purpose
This study aims to assess the predictive performance of various factors on Bitcoin returns, used for the development of a robust forecasting support decision model using machine learning techniques, before and during the COVID-19 pandemic. More specifically, the authors investigate the impact of the investor's sentiment on forecasting the Bitcoin returns.
Design/methodology/approach
This method uses feature selection techniques to assess the predictive performance of the different factors on the Bitcoin returns. Subsequently, the authors developed a forecasting model for the Bitcoin returns by evaluating the accuracy of three machine learning models, namely the one-dimensional convolutional neural network (1D-CNN), the bidirectional deep learning long short-term memory (BLSTM) neural networks and the support vector machine model.
Findings
The findings shed light on the importance of the investor's sentiment in enhancing the accuracy of the return forecasts. Furthermore, the investor's sentiment, the economic policy uncertainty (EPU), gold and the financial stress index (FSI) are the top best determinants before the COVID-19 outbreak. However, there was a significant decrease in the importance of financial uncertainty (FSI and EPU) during the COVID-19 pandemic, proving that investors attach much more importance to the sentimental side than to the traditional uncertainty factors. Regarding the forecasting model accuracy, the authors found that the 1D-CNN model showed the lowest prediction error before and during the COVID-19 and outperformed the other models. Therefore, it represents the best-performing algorithm among its tested counterparts, while the BLSTM is the least accurate model.
Practical implications
Moreover, this study contributes to a better understanding relevant for investors and policymakers to better forecast the returns based on a forecasting model, which can be used as a decision-making support tool. Therefore, the obtained results can drive the investors to uncover potential determinants, which forecast the Bitcoin returns. It actually gives more weight to the sentiment rather than financial uncertainties factors during the pandemic crisis.
Originality/value
To the authors’ knowledge, this is the first study to have attempted to construct a novel crypto sentiment measure and use it to develop a Bitcoin forecasting model. In fact, the development of a robust forecasting model, using machine learning techniques, offers a practical value as a decision-making support tool for investment strategies and policy formulation.
Details
Keywords
Fatma Hariz, Taicir Mezghani and Mouna Boujelbène Abbes
This paper aims to analyze the dependence structure between the Green Sukuk Spread in Malaysia and uncertainty factors from January 1, 2017, to May 23, 2023, covering two main…
Abstract
Purpose
This paper aims to analyze the dependence structure between the Green Sukuk Spread in Malaysia and uncertainty factors from January 1, 2017, to May 23, 2023, covering two main periods: the pre-COVID-19 and the COVID-19 periods.
Design/methodology/approach
This study contributes to the current literature by explicitly modeling nonlinear dependencies using the Regular vine copula approach to capture asymmetric characteristics of the tail dependence distribution. This study used the Archimedean copula models: Student’s-t, Gumbel, Gaussian, Clayton, Frank and Joe, which exhibit different tail dependence structures.
Findings
The empirical results suggest that Green Sukuk and various uncertainty variables have the strongest co-dependency before and during the COVID-19 crisis. Due to external uncertainties (COVID-19), the results reveal that global factors, such as the Infect-EMV-index and the higher financial stress index, significantly affect the spread of Green Sukuk. Interestingly, in times of COVID-19, its dependence on Green Sukuk and the news sentiment seems to be a symmetric tail dependence with a Student’s-t copula. This result is relevant for hedging strategies, as investors can enhance the performance of their portfolio during the COVID-19 crash period.
Originality/value
This study contributes to a better understanding of the dependency structure between Green Sukuk and uncertainty factors. It is relevant for market participants seeking to improve their risk management for Green Sukuk.
Details
Keywords
Taicir Mezghani, Fatma Ben Hamadou and Mouna Boujelbène-Abbes
This study aims to investigate the impact of the COVID-19 pandemic on the time-frequency connectedness between green bonds, stock markets and commodities (Brent and Gold), with a…
Abstract
Purpose
This study aims to investigate the impact of the COVID-19 pandemic on the time-frequency connectedness between green bonds, stock markets and commodities (Brent and Gold), with a particular focus on China and its implication for portfolio diversification across different frequencies.
Design/methodology/approach
To this end, the authors implement the frequency connectedness approach of Barunik and Krehlik (2018), followed by the network connectedness before and during the COVID-19 outbreak. In particular, the authors implement more involvement in portfolio allocation and risk management by estimating hedge ratios and hedging effectiveness for green bonds and other financial assets.
Findings
The time-frequency domain spillover results show that gold is the net transmitter of shocks to green bonds in the long run, whereas green Bonds are the net recipients of shocks, irrespective of time horizons. The subsample analysis for the pandemic crisis period shows that green bonds dominate the network connectedness dynamic, mainly because it is strongly connected with the SP500 index and China (SSE). Thus, green bonds may serve as a potential diversifier asset at different time horizons. Likewise, the authors empirically confirm that green bonds have sizeable diversification benefits and hedges for investors towards stock markets and commodity stock pairs before and during the COVID-19 outbreak for both the short and long term. Gold only offers diversification gains in the long run, while Brent does not provide the desired diversification gains. Thus, the study highlights that green bonds are only an effective diversified.
Originality/value
This study contributes to the existing literature by improving the understanding of the interconnectedness and hedging opportunities in short- and long-term horizons between green bonds, commodities and equity markets during the COVID-19 pandemic shock, with a particular focus on China. This study's findings provide more implications regarding portfolio allocation and risk management by estimating hedge ratios and hedging effectiveness.
Details