Search results

1 – 10 of 756
Article
Publication date: 17 April 2019

K. Ganesh Kumar

Here, the present paper characteristics flow and heat transfer of non-Newtonian nanofluid over a stretching sheet. Energy expression is modeled subject to slip factor phenomenon…

Abstract

Purpose

Here, the present paper characteristics flow and heat transfer of non-Newtonian nanofluid over a stretching sheet. Energy expression is modeled subject to slip factor phenomenon. Consideration of chemical reaction characterizes the mass transfer mechanism.

Design/methodology/approach

The use of transformation variables reduces the PDEs into non-linear ODEs. The obtained nonlinear complex problems are computed numerically through RKF-45 technique. The effects of the different physical parameters on the temperature and concentration distribution are analyzed.

Findings

The nature of the reduced Nusselt number, reduced Sherwood number and skin friction coefficient also described as a function of different parameters arising in the problem. It is found that the rate of mass transfer enhances for enhancing values Brownian motion parameter and thermophoresis parameter.

Originality/value

The nature of the reduced Nusselt number, reduced Sherwood number and skin friction coefficient also described as a function of different parameters arising in the problem. It is found that, the rate of mass transfer enhances for enhancing values Brownian motion parameter and thermophoresis parameter.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 July 2019

K. Ganesh Kumar and M. Archana

The purpose of this paper is to model the boundary layer flow and heat transfer of dusty fluid with suspended nanoparticles over a stretching surface. The effect of multiple slip…

Abstract

Purpose

The purpose of this paper is to model the boundary layer flow and heat transfer of dusty fluid with suspended nanoparticles over a stretching surface. The effect of multiple slip and nonlinear thermal radiation is taken into the account. Adequate similarity transformations are used to obtain a set of nonlinear ordinary differential equations to govern formulated problem. The resultant non-dimensionalized boundary value problem is solved numerically using the RKF-45 method. The profiles for velocity and temperature, which are controlled by thermophysical parameters, are presented graphically. Based on these plots, the conclusion is given and the obtained numerical results are tabulated. Observed interesting fact is that the SiO2-water nanoparticles show a thicker thermal boundary layer than TiO2-water nanoparticles.

Design/methodology/approach

The governing partial differential equations are approximated to a system of nonlinear ordinary differential equations by using suitable similarity transformations. An effective fourth–fifth-order Runge–Kutta–Fehlberg integration scheme numerically solves these equations along with a shooting technique. The effects of various pertinent parameters on the flow and heat transfer are examined.

Findings

Present results have an excellent agreement with previous published results in the limiting cases. The values of skin friction and wall temperature for different governing parameters are also tabulated. It is demonstrated that the SiO2-water nanoparticles show a thicker thermal boundary layer than TiO2-water nanoparticles. It is interesting to note that the dusty nanofluids are found to have higher thermal conductivity.

Originality/value

This paper is a new work related to comparative study of TiO2 and SiO2 nanoparticles in heat transfer of dusty fluid flow.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 June 2019

Ganesh Kumar K.

This paper aims to explore the consequence of chemical reaction on three-dimensional flow, heat and mass transfer of a Casson nano liquid over exponentially stretching surface. A…

Abstract

Purpose

This paper aims to explore the consequence of chemical reaction on three-dimensional flow, heat and mass transfer of a Casson nano liquid over exponentially stretching surface. A numerical technique of RKF-45 method is applied to resolve the nonlinear ordinary differential equations, which are obtained by applying the similarity transformation to the nonlinear partial differential system.

Design/methodology/approach

Role of significant parameters on flow fields are observed graphically. Also, the strength of heat exchange (Nusselt number) and the strength of mass exchange (Sherwood number) are analyzed.

Findings

The results of numerical modeling showed that, the Prandtl number plays a key role in reducing the temperature of the system. Further, the radiation parameters manufacture a lot of heat to operating fluid and higher temperature exponent parameter and enhance the temperature of the fluid.

Originality/value

The results of numerical modeling showed that, the Prandtl number plays a key role in reducing the temperature of the system. Further, the radiation parameters manufacture a lot of heat to operating fluid and higher temperature exponent parameter and enhance the temperature of the fluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 December 2018

K. Ganesh Kumar, M.R. Krishnamurthy and Rudraswamy N.G.

The purpose of this paper is to study the impact of Joule heating on boundary layer flow and melting heat transfer of Prandtl fluid over a stretching sheet in the presence of…

Abstract

Purpose

The purpose of this paper is to study the impact of Joule heating on boundary layer flow and melting heat transfer of Prandtl fluid over a stretching sheet in the presence of fluid particles suspension. The transformed boundary layer equations are solved numerically by RKF-45 method. The influence of the non-dimensional parameters on velocity and temperature growths in the boundary layer region is analyzed in detail and the results are shown graphically. The results indicate that the larger estimation of α and β reduces for both velocity and temperature profile. Further, the rate of heat transfer decreases by increasing melting parameter.

Design/methodology/approach

The converted set of boundary layer equations is solved numerically by RKF-45 method. Obtained numerical results for flow and heat transfer characteristics are deliberated for various physical parameters. Furthermore, the skin friction coefficient and Nusselt number are also presented.

Findings

It is found that the heat transfer rates are advanced in the occurrence of non-linear radiation camper to linear radiation. Also, it is noticed that velocity profile increases by increasing Prandtl parameter but establishes opposite results for temperature profile.

Originality/value

The authors intend to analyze the boundary layer flow and melting heat transfer of a Prandtl fluid over a stretching surface in the presence of fluid particles suspension. The governing systems of partial differential equations have been transformed to a set of coupled ordinary differential equations by applying appropriate similarity transformations. The reduced equations are solved numerically. The pertinent parameters are discussed through graphs and plotted graphs. The present results are compared with the existing limiting solutions, showing good agreement with each other.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 23 June 2020

M. Gnaneswara Reddy, P. Vijaya Kumari, G. Upender Reddy, K. Ganesh Kumar and B. C. Prasannakumara

The main theme of this paper is the effect of viscous dissipation Darcy–Forchheimer flow and heat transfer augmentation of a viscoelastic fluid over an incessant moving needle.

Abstract

Purpose

The main theme of this paper is the effect of viscous dissipation Darcy–Forchheimer flow and heat transfer augmentation of a viscoelastic fluid over an incessant moving needle.

Design/methodology/approach

The governing partial differential equations of the current problem are diminished into a set of ordinary differential equations using requisite similarity transformations. Energy equation is extended by using Cattaneo–Christov heat flux model with variable thermal conductivity. By applying boundary layer approximation system of equations is framed.

Findings

Convective condition is also introduced in this analysis. Obtained set of similarity equations are then solved with the help of efficient numerical method four–fifth-order RKF-45.

Originality/value

The outcomes of various pertinent parameters on the velocity, temperature distributions are analysed by using portraits.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 June 2020

M. Gnaneswara Reddy, P. Vijayakumari, L. Krishna, K. Ganesh Kumar and B.C Prasannakumara

In this framework, the three dimensional (3D) flow of hydromagnetic Carreau nanofluid transport over a stretching sheet has been addressed by considering the impacts of nonlinear…

Abstract

Purpose

In this framework, the three dimensional (3D) flow of hydromagnetic Carreau nanofluid transport over a stretching sheet has been addressed by considering the impacts of nonlinear thermal radiation and convective conditions.

Design/methodology/approach

Infinite shear rate viscosity impacts are invoiced in the modeling. The heat and mass transport characteristics are explored by employing the effects of a magnetic field, thermal nonlinear radiation and buoyancy effects. Rudimentary governing partial differential equations (PDEs) are represented and are transformed into ordinary differential equations by the use of similarity transformation. The nonlinear ordinary differential equations (ODEs), along with the boundary conditions, are resolved with the aid of a Runge-Kutta-Fehlberg scheme (RKFS) based on the shooting technique.

Findings

The impact of sundry parameters like the viscosity ratio parameter (β*), nonlinear convection parameters due to temperature and concentration (βT, βC), mixed convection parameter (α), Hartmann number (M2), Weissenberg number (We), nonlinear radiation parameter (NR), and the Prandtl number (Pr) on the velocity, temperature and the concentration distributions are examined. Furthermore, the impacts of important variables on the skin friction, Nusselt number and the Sherwood number have been scrutinized through tables and graphical plots.

Originality/value

The velocity distribution is suppressed by greater values of the Hartmann number. The velocity components in the tangential and axial directions of the fluid are raised with the viscosity ratio parameter and the tangential slip parameter, but these components are reduced with concentration to thermal buoyancy forces ratio and stretching sheet ratio.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 June 2019

Ganesh Kumar K., Chamkha Ali J., Prasannakumara B.C. and Jyothi A.M.

This paper aims to explore particle shape effect on Cu-H2O nanoparticles over a moving plate in the presence of nonlinear thermal radiation. To characterize the effect, particle…

Abstract

Purpose

This paper aims to explore particle shape effect on Cu-H2O nanoparticles over a moving plate in the presence of nonlinear thermal radiation. To characterize the effect, particle shape and viscous dissipation are considered. Convergent solutions for the resulting nonlinear systems are derived and the effects of embedded parameters of interest on velocity and temperature field are examined.

Design/methodology/approach

The Runge–Kutta–Fehlberg fourth-fifth order method along with shooting technique is used to solve the governing equations (6) and (7) with boundary conditions (8). A suitable finite value of η is considered in such a way that the boundary conditions are satisfied asymptotically.

Findings

The results show an increase in both the heat transfer and thermodynamic performance of the system. However, among the three nanoparticle shapes, disk shape exhibited better heat transfer characteristics and heat transfer rate. On the other hand, the velocity profile enhances with increasing values of ϕ in the first solution, but the opposite trend was found in the second solution.

Originality/value

The present paper deals with an exploration of particle shape effect on Cu-H2O nanoparticles over a moving plate in the presence of nonlinear thermal radiation. To characterize the effect, particle shape and viscous dissipation are considered. Convergent solutions for the resulting nonlinear systems are derived and the effects of embedded parameters of interest on velocity and temperature field are examined. The skin friction coefficient and Nusselt number are numerically tabulated and discussed. The results show an increase in both heat transfer and thermodynamic performance of the system. However, among the three nanoparticle shapes, disk shape exhibited better heat-transfer characteristics and heat-transfer rate. On the other hand, the velocity profile enhances with increasing values of ϕ in the first solution, but the opposite trend was found in the second solution.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 June 2019

Sawan Kumar Rawat, Ashish Mishra and Manoj Kumar

The purpose of this paper is to explore the flow of Cu-water and Ag-water nanofluids past a vertical Riga plate. The plate is infinite in height and has zero normal wall flux…

Abstract

Purpose

The purpose of this paper is to explore the flow of Cu-water and Ag-water nanofluids past a vertical Riga plate. The plate is infinite in height and has zero normal wall flux through its surface. Influence of thermal radiation, slip, suction and chemical reaction on the flow characteristics are reported.

Design/methodology/approach

Non-dimensional forms of the flow governing equations are obtained by means of a set of similarity transformations. Numerical solution is obtained with the help of fourth-fifth-order Runge–Kutta–Fehlberg method with shooting procedure. Comparison of solution profiles of Cu-water and Ag-water nanofluids are presented graphically and with the help of tables. Influence of pertinent parameters on skin friction and heat transfer rate is also reported.

Findings

Results reveal that the skin friction coefficient is more prominent in the case of Ag-water nanofluid for an increase in thermal radiation and volume fraction. The role of suction and slip is to increase velocity but decrease the temperature in both nanofluids. Temperature and velocity of both nanofluids increase as volume fraction and thermal radiation values are augmented. Heat transport increases with thermal radiation. Region near the plate experiences rise in nanoparticle concentration with an increase in chemical reaction parameter.

Originality/value

A complete investigation of the modeled problem is addressed and the results of this paper are original.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 December 2022

Shubham Kumar, Keya Sengupta and Bidyut Jyoti Gogoi

The concept of sustainable livelihoods – commonly understood as managing of means of living without undermining natural resources – has gained momentum in international…

Abstract

Purpose

The concept of sustainable livelihoods – commonly understood as managing of means of living without undermining natural resources – has gained momentum in international development discourse. This review focuses on broadening of conceptualisation of policy intervention process for sustainable livelihoods approach and synthesis of evidence to track development in their knowledge structure.

Design/methodology/approach

Evidence available in the literature systematically reviewed with the established methods and themes of interest are curated, to assess the characteristics, mechanisms and caveats arising in policy and practice.

Findings

The authors found seventy-five independent studies that fit into the pre-specified research protocol and objectives. The authors classify these studies into six major themes: Economic wellbeing; Opportunities and capabilities; Climate and natural resources; Policy design; Formal-informal institutional environment; and Labour, entrepreneurship and exports. Various research gaps and directions for future research are also discussed.

Research limitations/implications

The study provides a typology of reviewed literature examining the profile dynamics. Thematic analysis resulted into identifying complementarities and trade-offs and results demonstrate multiple heterogeneity in structures, processes and outcomes.

Originality/value

The definitive areas of interventions are discussed to broaden the utility of the concept in a structured way. This review paper brings a comprehensive view of livelihood intervention system and contribute in enriching the social policy perspective.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/IJSE-06-2022-0402

Details

International Journal of Social Economics, vol. 50 no. 4
Type: Research Article
ISSN: 0306-8293

Keywords

Article
Publication date: 17 June 2021

Nurul Amirah Ishak, Md Zahidul Islam and Wardah Azimah Sumardi

This paper aims to review existing literature on the role of human resource management (HRM) practices in nurturing employee’s organisational commitment (OC), which subsequently…

1027

Abstract

Purpose

This paper aims to review existing literature on the role of human resource management (HRM) practices in nurturing employee’s organisational commitment (OC), which subsequently promoting knowledge transfer (KT) within an organisation and propose a conceptual framework for future empirical research.

Design/methodology/approach

An extensive review of existing literature was undertaken in an attempt to build the conceptual model for KT.

Findings

The proposed conceptual framework illustrates the role of OC as a focal mediating mechanism in fostering KT. This paper identifies “high commitment” HRM (HCHRM) (e.g. staffing, job design, training and development, performance appraisal and reward system) as the factors influencing the development of OC, which subsequently affecting KT (i.e. knowledge sharing and application). Also, this paper integrates the potential moderating roles of leader-member exchange (LMX) between HCHRM practices-OC, as well as information and communication technology support in the OC-KT linkage into the proposed framework.

Research limitations/implications

This paper presents a comprehensive view of fostering KT. However, the major limitation of this paper is that it remains at a conceptual level. Further empirical investigations would be helpful to test propositions, hence validating the proposed conceptual framework.

Practical implications

The proposed conceptual framework could serve as practical guidance for managers and/or practitioners in developing policies that will facilitate KT in business organisations.

Originality/value

While KT is often viewed as a single phenomenon, this paper considers the KT into two components (i.e, sharing and application) in accordance with the practice-based perspective on knowledge and behavioural approach to KT. In addition, the adoption of the general workplace commitment model in conceptualising KT could further validate its applicability in knowledge management research. Also, the integration of LMX as a moderator in the proposed framework could contribute to the scant research on LMX-related moderation models upon validation.

Details

VINE Journal of Information and Knowledge Management Systems, vol. 53 no. 4
Type: Research Article
ISSN: 2059-5891

Keywords

1 – 10 of 756