Search results
1 – 10 of 23Yongliang Wang, Jiansong Hu, David Kennedy, Jianhui Wang and Jiali Wu
Moderately thick circular cylindrical shells are widely used as supporting structures or storage cavities in structural engineering, rock engineering, and aerospace engineering…
Abstract
Purpose
Moderately thick circular cylindrical shells are widely used as supporting structures or storage cavities in structural engineering, rock engineering, and aerospace engineering. In practical engineering, shells often work with micro-cracks or defects. The existence of micro-crack damage may result in the disturbance of dynamic behaviours and even induce accidental dynamic disasters. The free vibration frequency and mode are important parameters for the dynamic performance and damage identification analysis. In particular, stiffness weakening of the local damage region leads to significant changes in the vibration mode, which makes it difficult for the mesh generated in the conventional finite element method to capture a high-precision solution of the local oscillation.
Design/methodology/approach
In response to the above problems, this study developed an adaptive finite element method and a crack damage characterisation method for moderately thick circular cylindrical shells. By introducing the inverse power iteration method, error estimation, and mesh subdivision refinement technique for the analysis of finite element eigenvalue problems, an adaptive computation scheme was constructed for the free vibration problem of moderately thick circular cylindrical shells with circumferential crack damage.
Findings
Based on typical numerical examples, the established adaptive finite element solution for the free vibration of moderately thick circular cylindrical shells demonstrated its suitability for solving the high-precision free vibration frequency and mode of cylindrical shell structures. The any order frequency and mode shape of cracked cylindrical shells under the conditions of different ring wave numbers, crack locations, crack depths, and multiple cracks were successfully solved. The influences of the location, depth, and number of cracks on the disturbance of dynamic behaviours were analysed.
Originality/value
This study can be used as a reference for the adaptive finite element solution of free vibration of moderately thick circular cylindrical shells with cracks and lays the foundation for further development of a high-performance computation method suitable for the dynamic disturbance and damage identification analysis of general cracked structures.
Details
Keywords
Yongliang Wang and Jianhui Wang
This study presents a novel hp-version adaptive finite element method (FEM) to investigate the high-precision eigensolutions of the free vibration of moderately thick circular…
Abstract
Purpose
This study presents a novel hp-version adaptive finite element method (FEM) to investigate the high-precision eigensolutions of the free vibration of moderately thick circular cylindrical shells, involving the issues of variable geometrical factors, such as the thickness, circumferential wave number, radius and length.
Design/methodology/approach
An hp-version adaptive finite element (FE) algorithm is proposed for determining the eigensolutions of the free vibration of moderately thick circular cylindrical shells via error homogenisation and higher-order interpolation. This algorithm first develops the established h-version mesh refinement method for detecting the non-uniform distributed optimised meshes, where the error estimation and element subdivision approaches based on the superconvergent patch recovery displacement method are introduced to obtain high-precision solutions. The errors in the vibration mode solutions in the global space domain are homogenised and approximately the same. Subsequently, on the refined meshes, the algorithm uses higher-order shape functions for the interpolation of trial displacement functions to reduce the errors quickly, until the solution meets a pre-specified error tolerance condition. In this algorithm, the non-uniform mesh generation and higher-order interpolation of shape functions are suitable for addressing the problem of complex frequencies and modes caused by variable structural geometries.
Findings
Numerical results are presented for moderately thick circular cylindrical shells with different geometrical factors (circumferential wave number, thickness-to-radius ratio, thickness-to-length ratio) to demonstrate the effectiveness, accuracy and reliability of the proposed method. The hp-version refinement uses fewer optimised meshes than h-version mesh refinement, and only one-step interpolation of the higher-order shape function yields the eigensolutions satisfying the accuracy requirement.
Originality/value
The proposed combination of methodologies provides a complete hp-version adaptive FEM for analysing the free vibration of moderately thick circular cylindrical shells. This algorithm can be extended to general eigenproblems and geometric forms of structures to solve for the frequency and mode quickly and efficiently.
Details
Keywords
Xugang Zhang, Bin Zhang, Mingming Sun, Jianhui Li, Lei Wang and Chuanli Qin
The purpose of this paper is to obtain liquid acrylate oligomers containing carboxyl groups as excellent toughening agents for epoxy resins.
Abstract
Purpose
The purpose of this paper is to obtain liquid acrylate oligomers containing carboxyl groups as excellent toughening agents for epoxy resins.
Design/methodology/approach
Liquid acrylate oligomers containing carboxyl groups were synthesised by the solution polymerisation of butyl acrylate (BA), acrylic acid (AA) and acrylonitrile (AN) as monomers. The liquid acrylate oligomers were used as the toughening agents for epoxy resins. The chemical structure of the oligomers was characterised by 13C nuclear magnetic resonance (NMR) spectroscope. The morphology of modified epoxy networks was analysed by scanning electron microscope (SEM). The mechanical and thermodynamic properties were measured by universal testing machine and dynamic mechanical analyser (DMA).
Findings
The results show that AA and oligomer concentrations have great influence on the morphology, mechanical and thermodynamic properties of the modified epoxy networks. When the 10 wt percent oligomer containing BA and AN and AA in the ratio of 75/20/5 is used to modify the epoxy resin, the increase in impact strength of the modified epoxy network is 291.5 percent over the unmodified epoxy network due to addition of the oligomers without a sacrifice in heat‐resistance properties. Fracture surface analysis by SEM indicates the presence of a two‐phase microstructure.
Practical implications
The modified epoxy networks can be used as high performance materials such as adhesives, sealants and matrices of composites.
Originality/value
The liquid acrylate oligomers containing carboxyl and nitrile groups which were synthesised with BA, AA and AN as monomers by the solution polymerisation are novel and can greatly increase the toughness of epoxy resins without loss of thermal resistance.
Details
Keywords
Jie Wang, Jianhui Liu, Feilon Hua, Yingbao He and Xuexue Wang
Engineering components/structures are usually subjected to complex and variable loads, which result in random multiaxial stress/strain states. However, fatigue analysis methods…
Abstract
Purpose
Engineering components/structures are usually subjected to complex and variable loads, which result in random multiaxial stress/strain states. However, fatigue analysis methods under constant loads cannot be directly applied to fatigue life prediction analysis under random loads. Therefore, the purpose of this study is how to effectively evaluate fatigue life under multiaxial random loading.
Design/methodology/approach
First, the average phase difference is characterized as the ratio of the number of shear strain cycles to the number of normal strain cycles, and the new non-proportional additional hardening factor is proposed. Then, the determined random typical load spectrum is processed into a simple variable amplitude load spectrum, and the damage in each plane is calculated according to the multiaxial fatigue life prediction model and Miner theory. Meanwhile, the cumulative damage can be calculated separately by projection method. Finally, the maximum projected cumulative damage plane is defined as the critical plane of multiaxial random fatigue.
Findings
The fatigue life prediction capability of the method is verified based on test data of TC4 titanium alloy under random multiaxial loading. Most of the predicting results are within double scatter bands.
Originality/value
The objective of this study is to provide a reference for the determination of critical plane and non-proportional additional hardening factor under multiaxial random loading, and to promote the development of multiaxial fatigue from experimental studies to practical engineering applications.
Details
Keywords
Shenglei Wu, Jianhui Liu, Yazhou Wang, Jumei Lu and Ziyang Zhang
Sufficient sample data are the necessary condition to ensure high reliability; however, there are relatively poor fatigue test data in the engineering, which affects fatigue…
Abstract
Purpose
Sufficient sample data are the necessary condition to ensure high reliability; however, there are relatively poor fatigue test data in the engineering, which affects fatigue life's prediction accuracy. Based on this, this research intends to analyze the fatigue data with small sample characteristics, and then realize the life assessment under different stress levels.
Design/methodology/approach
Firstly, the Bootstrap method and the principle of fatigue life percentile consistency are used to realize sample aggregation and information fusion. Secondly, the classical outlier detection algorithm (DBSCAN) is used to check the sample data. Then, based on the stress field intensity method, the influence of the non-uniform stress field near the notch root on the fatigue life is analyzed, and the calculation methods of the fatigue damage zone radius and the weighting function are revised. Finally, combined with Weibull distribution, a framework for assessing multiaxial low-cycle fatigue life has been developed.
Findings
The experimental data of Q355(D) material verified the model and compared it with the Yao’s stress field intensity method. The results show that the predictions of the model put forward in this research are all located within the double dispersion zone, with better prediction accuracies than the Yao’s stress field intensity method.
Originality/value
Aiming at the fatigue test data with small sample characteristics, this research has presented a new method of notch fatigue analysis based on the stress field intensity method, which is combined with the Weibull distribution to construct a low-cycle fatigue life analysis framework, to promote the development of multiaxial fatigue from experimental studies to practical engineering applications.
Details
Keywords
Yaobing Wei, Xuexue Wang, Jianhui Liu, Jianwei Li and Yichen Pan
Engineering composite laminates/structures are usually subjected to complex and variable loads, which result in interlayer delamination damage. However, damaged laminate may cause…
Abstract
Purpose
Engineering composite laminates/structures are usually subjected to complex and variable loads, which result in interlayer delamination damage. However, damaged laminate may cause the whole structure to fail before reaching the design level. Therefore, the purpose of this paper is to develop an equivalent model to effectively evaluate compressive residual strength.
Design/methodology/approach
In this paper, taking carbon fiber reinforced composite T300/69 specimens as the study object, first, the compressive residual strength under different impact energy is obtained. Then, zero-thickness cohesive elements, Hashin failure criteria and Camanho nonlinear degradation scheme are used to simulate the full-process simulation for compression after edge impact (CAEI). Lastly, based on an improved Whitney–Nuismer criterion, the equation of edge hole stress distribution, characteristic length and compressive residual strength is used to verify the correctness of the equivalent model.
Findings
An equivalent relationship between the compressive residual strength of damaged laminates and laminates with edge hole is established. For T300/69 laminates with a thickness of 2.4 mm, the compressive residual strength after damage under an impact energy of 3 J is equivalent to that when the hole aperture R = 2.25 mm and the hole aperture R = 9.18 mm when impact energy is 6 J. Besides, the relationship under the same size and different thickness is obtained.
Originality/value
The value of this study is to provide a reference for the equivalent behavior of damaged laminates. An equivalent model proposed in this paper will contribute to the research of compressive residual strength and provide a theoretical basis for practical engineering application.
Details
Keywords
Yaobing Wei, Yanan Li, Jianhui Liu, Gai Wang, Yanlei Guo and Xuemei Pan
In practical engineering, oil filters often work under asymmetric cyclic loading. In order to improve the prediction accuracy of fatigue life of the oil filters under asymmetric…
Abstract
Purpose
In practical engineering, oil filters often work under asymmetric cyclic loading. In order to improve the prediction accuracy of fatigue life of the oil filters under asymmetric cyclic loading, the effect of strain ratio and low cycle fatigue plastic deformation on fatigue life need to be considered. This paper aims to discuss the aforementioned objective.
Design/methodology/approach
First, strain-controlled fatigue tests with strain ratios of 0, 0.5 and −1 were carried out on the oil filter material 2A70-T6 aluminum alloy, and the test data were used to obtain strain fatigue life curves at three strain ratios. Then, based on the idea of the constant life curve method, the average value of the ratio of the strain amplitude corresponding to different strain ratios under the same partial life was defined as the strain ratio factor. Finally, the elastic-plastic factor was modified by the strain ratio factor, and a new fatigue life prediction model considering the effect of strain ratio was proposed.
Findings
The proposed model was validated, respectively, by fatigue test data of 2A70-T6 aluminum alloy, 2124-T851 aluminum alloy and oil filter and the results of the proposed model were compared with the Coffin–Manson equation, Morrow model and Smith–Watson–Topper (SWT) model, showing that the proposed model had higher applicability and accuracy.
Originality/value
In this work, a strain ratio factor is established based on the idea of the constant life curve method, and the strain ratio factor is used to modify the introduced elastic-plastic factor, and then a new fatigue life prediction model considering the influence of strain ratio and low cycle fatigue plastic deformation on material fatigue damage accumulation is proposed. The results show that the prediction results of the proposed model are in good agreement with the experimental data, and the proposed model has good fatigue life prediction ability considering the influence of strain ratio and lays a foundation for the fatigue life prediction of the oil filter.
Details
Keywords
Yingbao He, Jianhui Liu, Feilong Hua, He Zhao and Jie Wang
Under multiaxial random loading, the material stress–strain response is not periodic, which makes it difficult to determine the direction of the critical plane on the material…
Abstract
Purpose
Under multiaxial random loading, the material stress–strain response is not periodic, which makes it difficult to determine the direction of the critical plane on the material. Meanwhile, existing methods of constant loading cannot be directly applied to multiaxial random loading; this problem can be solved when an equivalent stress transformation method is used.
Design/methodology/approach
First, the Liu-Mahadevan critical plane is introduced into multiaxial random fatigue, which is enabled to determine the material's critical plane position under random loading. Then, an equivalent stress transformation method is proposed which can convert random load to constant load. Meanwhile, the ratio of mean stress to yield strength is defined as the new mean stress influence factor, and a new non-proportional additional strengthening factor is proposed by considering the effect of phase differences.
Findings
The proposed model is validated using multiaxial random fatigue test data of TC4 titanium alloy specimens and the results of the proposed model are compared with that based on Miner's rule and BSW model, showing that the proposed method is more accurate.
Originality/value
In this work, a new multiaxial random fatigue life prediction model is proposed based on equivalent stress transformation method, which considers the mean stress effect and the additional strengthening effect. Results show that the predicted fatigue lives given by the proposed model are in well accordance with the tested data.
Details
Keywords
Jianhui Liu, Ziyang Zhang, Longxiang Zhu, Jie Wang and Yingbao He
Due to the limitation of experimental conditions and budget, fatigue data of mechanical components are often scarce in practical engineering, which leads to low reliability of…
Abstract
Purpose
Due to the limitation of experimental conditions and budget, fatigue data of mechanical components are often scarce in practical engineering, which leads to low reliability of fatigue data and reduces the accuracy of fatigue life prediction. Therefore, this study aims to expand the available fatigue data and verify its reliability, enabling the achievement of life prediction analysis at different stress levels.
Design/methodology/approach
First, the principle of fatigue life probability percentiles consistency and the perturbation optimization technique is used to realize the equivalent conversion of small samples fatigue life test data at different stress levels. Meanwhile, checking failure model by fitting the goodness of fit test and proposing a Monte Carlo method based on the data distribution characteristics and a numerical simulation strategy of directional sampling is used to extend equivalent data. Furthermore, the relationship between effective stress and characteristic life is analyzed using a combination of the Weibull distribution and the Stromeyer equation. An iterative sequence is established to obtain predicted life.
Findings
The TC4–DT titanium alloy is selected to assess the accuracy and reliability of the proposed method and the results show that predicted life obtained with the proposed method is within the double dispersion band, indicating high accuracy.
Originality/value
The purpose of this study is to provide a reference for the expansion of small sample fatigue test data, verification of data reliability and prediction of fatigue life data. In addition, the proposed method provides a theoretical basis for engineering applications.
Details
Keywords
Jianhui Jian, Haiyan Tian, Dan Hu and Zimeng Tang
With the growing concern of various sectors of society regarding environmental issues and the promotion of sustainable development, green technology innovation is generally…
Abstract
Purpose
With the growing concern of various sectors of society regarding environmental issues and the promotion of sustainable development, green technology innovation is generally considered to be conducive to the long-term development of enterprises. However, because of the existence of agency problems, managers may have shortsighted behaviors. Then how will managers' shortsighted behaviors affect enterprises' green technology innovation?
Design/methodology/approach
This paper uses machine learning-based text analysis methods to construct a manager myopia index based on the data from A-share listed companies on the Shanghai and Shenzhen Stock Exchanges from 2015 to 2020. We examine the impact of manager myopia on green technology innovation in companies.
Findings
Our study finds that manager myopia significantly inhibits green technology innovation in companies. However, when multiple large shareholders coexist and the proportion of institutional investors' holdings is high, it can alleviate the inhibitory effect of manager myopia on green innovation. Heterogeneity tests show that the impact of manager myopia on green technology innovation is relatively significant in non-state-owned and manufacturing companies, as well as in the electricity industry. Robustness tests demonstrate that our conclusions remain valid after using propensity score matching to eliminate endogeneity problems.
Originality/value
From the perspective of corporate governance, this paper incorporates managers' shortsightedness, multiple large shareholders and institutional investors' shareholding ratios into the same logical framework, analyzes their internal mechanisms, helps improve corporate governance, enhances green innovation capabilities and has strong implications for the implementation of national innovation-driven development strategies and the achievement of “carbon peak” and “carbon neutrality” targets.
Details