Search results

1 – 10 of 20
Article
Publication date: 22 February 2024

Zhaoyang Sun, Haiyang Zhou, Tianchen Yang, Kun Wang and Yubo Hou

The shape of a product plays a crucial role in shaping consumer behavior. Despite the voluminous research on factors influencing consumers’ shape preferences, there remains a…

Abstract

Purpose

The shape of a product plays a crucial role in shaping consumer behavior. Despite the voluminous research on factors influencing consumers’ shape preferences, there remains a limited understanding of how the busy mindset, a mentality increasingly emphasized by marketing campaigns, works. This study aims to fill this gap by exploring the relationship between a busy mindset and the preference for angular-shaped versus circular-shaped products and brand logos.

Design/methodology/approach

This research consists of seven experimental studies using various shape stimuli, distinct manipulations of busy mindset, different assessments of shape preference and samples drawn from multiple countries.

Findings

The findings reveal that a busy mindset leads to a preference for angular shapes over circular ones by amplifying the need for uniqueness. In addition, these effects are attenuated when products are scarce.

Originality/value

This research represents one of the pioneering efforts to study the role of a busy mindset on consumers’ aesthetic preferences. Beyond yielding insights for practitioners into visual marketing, this research contributes to the theories on the busy mindset and shape preference.

Details

Journal of Product & Brand Management, vol. 33 no. 3
Type: Research Article
ISSN: 1061-0421

Keywords

Article
Publication date: 17 November 2021

Yuan Sun, Rong-An Shang, Haiyang Cao, Hongyu Jiang, Klaus Boehnke and Jindi Fu

Enterprise social media can be the organizational transactive memory in which the knowledge dialogue provides users with the metaknowledge to support knowledge transfer. The…

Abstract

Purpose

Enterprise social media can be the organizational transactive memory in which the knowledge dialogue provides users with the metaknowledge to support knowledge transfer. The purpose of this study is to examine a mediation model to show how perceived critical mass, openness and affiliation climate affect organizational knowledge transfer through the mediation of improving the metaknowledge of who knows what and whom.

Design/methodology/approach

To test the mediation model and corresponding hypotheses, this study employs structural equation modeling analysis using 264 valid questionnaires.

Findings

The study found the two mediators fully explained the effects of the three preconditions on knowledge transfer.

Originality/value

These results help us to better understand the benefits of enterprise social media and the functions of transactive memory in organizations.

Details

Industrial Management & Data Systems, vol. 122 no. 1
Type: Research Article
ISSN: 0263-5577

Keywords

Open Access
Article
Publication date: 12 August 2022

Limin Jia, Xiyuan Chen, Xiaoping Ma, Qing Xu, Haiyang Yu, Wei Sun, Weiming Luo, Bolin Gao and Honghui Dong

This paper aims to define the concept, composition, connotation, functional technology and development path of autonomous transportation systems (ATS) and provide theoretical…

1397

Abstract

Purpose

This paper aims to define the concept, composition, connotation, functional technology and development path of autonomous transportation systems (ATS) and provide theoretical basis and support for the construction and development of ATS.

Design/methodology/approach

The research analyzes the concept and connotation of ATS, studies the composition and structure of ATS, sorts out pillar function technology system including perception, digitization, interoperability, computing and integration in ATS hierarchically, and looks forward to the future development path of ATS from human participation and systems intelligence.

Findings

This paper puts forward the concept, composition, connotation and structure of ATS, proposes the pillar functional technology system of ATS and proposes four development stages of ATS.

Originality/value

The research can provide a theoretical and scientific basis for the high-quality, efficient, orderly construction and development of ATS.

Details

Smart and Resilient Transportation, vol. 4 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Article
Publication date: 13 May 2020

Haiyang Gu, Kaiqi Liu, Xingyi Huang, Quansheng Chen, Yanhui Sun and Chin Ping Tan

Parallel factor analysis (PARAFAC) coupled with support-vector machine (SVM) was carried out to identify and discriminate between the fluorescence spectroscopies of coconut water…

Abstract

Purpose

Parallel factor analysis (PARAFAC) coupled with support-vector machine (SVM) was carried out to identify and discriminate between the fluorescence spectroscopies of coconut water brands.

Design/methodology/approach

PARAFAC was applied to reduce three-dimensional data of excitation emission matrix (EEM) to two-dimensional data. SVM was applied to discriminate between six commercial coconut water brands in this study. The three largest variation data from fluorescence spectroscopy were extracted using the PARAFAC method as the input data of SVM classifiers.

Findings

The discrimination results of the six commercial coconut water brands were achieved by three SVM methods (Ga-SVM, PSO-SVM and Grid-SVM). The best classification accuracies were 100.00%, 96.43% and 94.64% for the training set, test set and CV accuracy.

Originality/value

The above results indicate that fluorescence spectroscopy combined with PARAFAC and SVM methods proved to be a simple and rapid detection method for coconut water and perhaps other beverages.

Details

British Food Journal, vol. 122 no. 10
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 16 August 2021

Mengjuan Yin, Wenping Liang, Qiang Miao, Shiwei Zuo, Haiyang Yu and Jiale Cheng

This study aims to the service life of TA15 alloy by solving the problem of the binding force between the matrix and AlTiSiN coating. The effect of a plasma nitriding (PN…

Abstract

Purpose

This study aims to the service life of TA15 alloy by solving the problem of the binding force between the matrix and AlTiSiN coating. The effect of a plasma nitriding (PN) interlayer on the magnetron-sputtered AlTiSiN coating was also investigated in detail.

Design/methodology/approach

The double-glow plasma alloying (DGPA) and magnetron sputtering (MS) techniques were combined as a new approach to realize a bilayer on TA15 consisting of an AlTiSiN layer with a PN interlayer. A TiN interlayer was formed via co-diffusion during the PN conducted at 1050°C for 3 h.

Findings

The PN interlayer can effectively improve the adhesion between coating and matrix; the PN/AlTiSiN coating presented excellent adhesion (80.1 N) and anti-wear property with a nano-hardness of 18.62 GPa. The resulting three-dimensional wear-track morphology exhibited a shallow depth and a narrow width.

Originality/value

The novel combination of the DGPA and MS technologies, using an infiltration layer rather than a coating one as the intermediate layer, can effectively enhance the adhesion between AlTiSiN coating and TA15 matrix. Meanwhile, the gradient layer can effectively improve both surface bearing and wear resistance.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 February 2023

Haiyang Hu, Yu Wang, Chenchen Lian and Peiyan Wang

In this paper, an attempt is made to obtain buckling loads, ultimate bearing capacity and other required structural characteristics of grid structure panels. The numerical method…

Abstract

Purpose

In this paper, an attempt is made to obtain buckling loads, ultimate bearing capacity and other required structural characteristics of grid structure panels. The numerical method for post-buckling behavior analysis of panels involving multiple invisible damages is also presented.

Design/methodology/approach

In this paper, two bidirectional stiffened composite panels are manufactured and tested. Multiple discrete invisible damages are introduced in different positions of the stringers, and the experimental and simulation investigation of buckling and post-buckling were carried out on the damaged stiffened panels.

Findings

The simulation load–displacement curves are compared with the experimental results, and it is found that the simulation model can well predict the occurrence of buckling and failure loads. The strain curve shows that the rate of strain change at the damaged site is greater than that at the undamaged site, which reflects that the debond is more likely occurred at the damaged site. The simulation verifies that the panel is usually crushed due to matrix compression and fiber–matrix shear.

Originality/value

In this paper, post-buckling tests and numerical simulations of bidirectional stiffened composite panels with impact damage were carried out. Two panels with four longitudinal stringers and two transverse stringers were manufactured and tested. The buckling and post-buckling characteristics of the grid structure are obtained, and the failure mechanism of the structure is explained. This is helpful for the design of wall panel structure.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 1 February 2021

Haiyang Guo, Yun Bai, Qianyun Hu, Huangrui Zhuang and Xujie Feng

To evacuate passengers arriving at intercity railway stations efficiently, metros and intercity railways usually share the same station or have stations close to each other. When…

1363

Abstract

Purpose

To evacuate passengers arriving at intercity railway stations efficiently, metros and intercity railways usually share the same station or have stations close to each other. When intercity trains arrive intensively, a great number of passengers will burst into the metro station connecting with the intercity railway station within a short period, while the number of passengers will decrease substantially when intercity trains arrive sparsely. The metro timetables with regular headway currently adopted in real-world operations cannot handle the injected passenger demand properly. Timetable optimization of metro lines connecting with intercity railway stations is essential to improve service quality.

Design/methodology/approach

Based on arrival times of intercity trains and the entire process for passengers transferring from railway to metro, this paper develops a mathematical model to characterize the time-varying demand of passengers arriving at the platform of a metro station connecting with an intercity railway station. Provided the time-varying passenger demand and capacity of metro trains, a timetable model to optimize train departure time of a bi-direction metro line where an intermediate station connects with an intercity railway station is proposed. The objective is to minimize waiting time of passengers at the connecting station. The proposed timetable model is solved by an adaptive large neighborhood search algorithm.

Findings

Real-world case studies show that the prediction accuracy of the proposed model on passenger demand at the connecting station is higher than 90%, and the timetable model can reduce waiting time of passengers at the connecting station by 28.47% which is increased by 5% approximately than the calculation results of the generic algorithm.

Originality/value

This paper puts forward a model to predict the number of passengers arriving at the platform of connection stations via analyzing the entire process for passengers transferring from intercity trains to metros. Also, a timetable optimization model aiming at minimizing passenger waiting time of a metro line where an intermediate station is connected to an intercity railway station is proposed.

Details

Smart and Resilient Transportation, vol. 3 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Article
Publication date: 20 June 2016

Cheng Lei, Haiyang Mao, Yudong Yang, Wen Ou, Chenyang Xue, Zong Yao, Anjie Ming, Weibing Wang, Ling Wang, Jiandong Hu and Jijun Xiong

Thermopile infrared (IR) detectors are one of the most important IR devices. Considering that the surface area of conventional four-end-beam (FEB)-based thermopile devices cannot…

Abstract

Purpose

Thermopile infrared (IR) detectors are one of the most important IR devices. Considering that the surface area of conventional four-end-beam (FEB)-based thermopile devices cannot be effectively used and the performance of this type of devices is relatively low, this paper aims to present a double-end-beam (DEB)-based thermopile device with high duty cycle and performance. The paper aims to discuss these issues.

Design/methodology/approach

Numerical analysis was conducted to show the advantages of the DEB-based thermopile devices.

Findings

Structural size of the DEB-based thermopiles may be further scaled down and maintain relatively higher responsivity and detectivity when compared with the FEB-based thermopiles. The authors characterized the thermoelectric properties of the device proposed in this paper, which achieves a responsivity of 1,151.14 V/W, a detectivity of 4.15 × 108 cm Hz1/2/W and a response time of 14.46 ms sensor based on DEB structure.

Orginality/value

The paper proposed a micro electro mechanical systems (MEMS) thermopile infrared sensor based on double-end-beam structure.

Details

Sensor Review, vol. 36 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 26 June 2007

74

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 16 no. 3
Type: Research Article
ISSN: 0965-3562

Article
Publication date: 25 July 2022

Xin Tong, Baoer Hao, Zhi Chen, Haiyang Liu and Chuanzhong Xuan

This paper aims to solve the typical thermal airflow sensor's high power consumption and integration difficulties, based on the FS5 thermal element and constant temperature…

Abstract

Purpose

This paper aims to solve the typical thermal airflow sensor's high power consumption and integration difficulties, based on the FS5 thermal element and constant temperature measurement method, a flow sensor is developed with high measurement accuracy, low power consumption, small size, low cost and easy system integration.

Design/methodology/approach

A small wind tunnel was used to test and assess the sensor's measurement range, reaction time, stability, repeatability, measurement accuracy and multi-temperature calibration was performed in the temperature range of −10°C to 30°C. The effect of ambient temperature on the sensor's measurement data is investigated, and the coefficient correction method of power function was investigated to implement the sensor's software temperature compensation function.

Findings

The results show that the sensor is stable and repeatable, the output voltage has a power function relationship with the airflow rate, the flow rate measurement range is 0–18 m/s, the response time is less than 3 s, the measurement accuracy at high flow rates is within 0.4 m/s and the temperature-corrected airflow rate measurement error is less than 5%. Setting the temperature calibration interval to 2°C and 5°C has the same temperature compensation effect, reducing the sensor's calibration effort significantly.

Originality/value

This paper demonstrates that a thermostatic method is used to construct a thermal wind speed sensor that delivers accurate measurements in the wind speed measuring range of 0–18 m/s under test conditions. In addition, the sensor's performance is evaluated, and calibration tests for a wide range of temperatures are done. Finally, based on the power function correction method, a temperature compensation algorithm is proposed.

Details

Sensor Review, vol. 42 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 20