QUANTUM TRANSPORT: NOVEL APPROACHES IN THE FORMULATION AND APPLICATIONS TO QUANTUM‐BASED SOLID‐STATE DEVICES
ISSN: 0332-1649
Article publication date: 1 April 1991
Abstract
A novel approach to many‐body quantum transport theory which emphasize the role of localized orbitals, and their lattice Fourier transforms, as dynamical basis states is given. The formalism allows for the calculations of particle quantum trajectories, describing individual elementary space and time‐dependent events in quantum processes. It is demonstrated that the particle quantum trajectories exhibit behavior quite identical to that of classical particles acted upon by a new “effective quantum force”. The present technique for calculating the quantum force can be applied to a procedure for incorporating space and time‐dependent quantum tunneling in Selfconsistent Ensembe Particle Monte Carlo (SEPMC) technique for multidimensional device analysis.
Citation
Buot, F.A. and Jensen, K.L. (1991), "QUANTUM TRANSPORT: NOVEL APPROACHES IN THE FORMULATION AND APPLICATIONS TO QUANTUM‐BASED SOLID‐STATE DEVICES", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 10 No. 4, pp. 509-524. https://doi.org/10.1108/eb051725
Publisher
:MCB UP Ltd
Copyright © 1991, MCB UP Limited