To read this content please select one of the options below:

The effect of vacancy on the interfacial diffusion in Cu/Sn lead-free solder joints

Li Yang (College of Materials Science and Engineering, Beijing University of Technology, Beijing, China)
Li Xiaoyan (College of Materials Science and Engineering, Beijing University of Technology, Beijing, China)
Peng Yao (College of Materials Science and Engineering, Beijing University of Technology, Beijing, China)

Soldering & Surface Mount Technology

ISSN: 0954-0911

Article publication date: 18 February 2019

272

Abstract

Purpose

The purpose of this paper is to investigate the diffusion behaviors of different atoms at the Cu/Cu3Sn interface and the vacancy formation energy, diffusion energy barrier and vacancy diffusion activation energy.

Design/methodology/approach

The diffusion behaviors of different atoms at the Cu/Cu3Sn interface are analyzed, and the vacancy formation energy, diffusion energy barrier and vacancy diffusion activation energy are obtained using molecular dynamics simulation. The nudged elastic band method is used to evaluate diffusion energy barrier for Cu/Cu3Sn system.

Findings

It is found that the vacancies in the Cu/Cu3Sn interface promote the interfacial diffusion, and the formation energy of Cu vacancy in the Cu crystal is larger than that in Cu3Sn crystal. In addition, the formation energies of Cu1 vacancy and Cu2 vacancy are close to each other in Cu3Sn crystal, and they are all less than the formation energy of Sn vacancy. Furthermore, the vacancy diffusion barrier and vacancy diffusion activation energy of the Cu/Cu3Sn interface are calculated, and the results show that the vacancy diffusion activation energy of Sn was higher than that of Cu. Finally, by comparison of diffusion activation energies of different diffusion mechanisms, Cu→Cu1vac is the most possible migration path at all temperatures.

Originality/value

It is concluded that the vacancies in Cu/Cu3Sn interface promote interfacial diffusion, and the activation energy of vacancy diffusion in most diffusion mechanisms decreases with the increase of temperature.

Keywords

Citation

Yang, L., Xiaoyan, L. and Yao, P. (2019), "The effect of vacancy on the interfacial diffusion in Cu/Sn lead-free solder joints", Soldering & Surface Mount Technology, Vol. 31 No. 1, pp. 28-39. https://doi.org/10.1108/SSMT-03-2018-0010

Publisher

:

Emerald Publishing Limited

Copyright © 2018, Emerald Publishing Limited

Related articles