Analysis and simulation of straight-through labyrinth seal in hydrostatic support system
Industrial Lubrication and Tribology
ISSN: 0036-8792
Article publication date: 19 July 2019
Issue publication date: 22 August 2019
Abstract
Purpose
The purpose of this paper is to improve the bearing capacity and mechanical properties of the oil pocket.
Design/methodology/approach
In this paper, a straight-through labyrinth seal is installed in an oil sealing belt. The main structure of hydrostatic support system (HSS) is introduced, and the factors affecting the leakage loss are analyzed. The governing equations involving the momentum equation and the continuity equation for the land section and groove section are established separately based on the three-control-volume theory. To explain the flow capability of the straight-through labyrinth seal, the labyrinth seal with different clearance widths, groove numbers, groove depths and pressure difference is calculated. The results of the simulation are compared and analyzed.
Findings
The groove dimensions and groove numbers have important impact on the leakage and flow pattern of the seal.
Research limitations/implications
The fluid flow was simulated by commercial tools executed in the ANSYS Fluent, the computational fluid dynamics (CFD) solver and a steady state scheme with the realizable k-ε turbulence model was applied. The cavity structure of the straight-through labyrinth seal, forming turbulence eddy flows in the groove, which is a valid approach to convert turbulence kinetic energy into thermal energy, reduce leakage mass flow.
Practical implications
This research can provide the theoretical basis and technical support which is conducive to the practical application of the straight-through labyrinth seal in HSS.
Social implications
A new design structure is proposed to improve the bearing capacity and economic benefit of HSSs.
Originality/value
A straight-through labyrinth seal is applied to the oil sealing belt and the three-control-volume governing equation is established.
Keywords
Acknowledgements
This work was supported by the Tianjin Science and Technology Commission Project (Grant No. 14JCTPJC00536), Tianjin High School Science & Technology Fund Planning Project (Grant No. 20130402).
Citation
Zhang, X., Yin, M. and Sun, H. (2019), "Analysis and simulation of straight-through labyrinth seal in hydrostatic support system", Industrial Lubrication and Tribology, Vol. 71 No. 5, pp. 692-696. https://doi.org/10.1108/ILT-01-2019-0007
Publisher
:Emerald Publishing Limited
Copyright © 2019, Emerald Publishing Limited