Hydroforming of double-layer Y-shaped tube controlled by a novel backward punch shape
International Journal of Structural Integrity
ISSN: 1757-9864
Article publication date: 13 October 2023
Issue publication date: 14 November 2023
Abstract
Purpose
A new backward punch shape was designed and used in the hydroforming process of double-layer Y-shaped tubes to achieve uniform wall thickness. This study focuses on the implementation and effectiveness of this novel punch shape.
Design/methodology/approach
A numerical simulation and experimental validation of the hydroforming process of double-layer Y-shaped tubes under various backward punch, replenishment ratios (left and right feed ratios) and internal pressure loading paths was performed using finite elements. During the hydroforming process, an analysis was made on the distribution of stress, strain and wall thickness in both the inner and outer layers of the Y-shaped conduit.
Findings
The novel backward punch parallel to the main tube has been found to improve the distribution of wall thickness in Y-shaped tubes. By controlling the feeding ratio and modifying the loading path of the internal pressure, it is possible to obtain the optimal forming part of the double-layer Y-shaped tube. The comparison between the simulation and experimental results of the double-layer Y-shaped tube formed under the optimal path indicates that the error is within 5% and the distribution of wall thickness is consistent.
Originality/value
A novel backward punch technique is employed to control the hydroforming process in a Y-shaped tube. A study on hydroforming of double-layer Y-shaped tubes with asymmetric features and challenging forming conditions is being suggested.
Keywords
Acknowledgements
This work was financially supported by National Natural Science Foundation of China (Grant No. 52105322).
The authors would like to acknowledge the National Natural Science Foundation of China (Grant No. 52105322)
Citation
Feng, Y.Y., Jia, Y., Sun, X.Q., Chen, G.P. and Luo, Z.A. (2023), "Hydroforming of double-layer Y-shaped tube controlled by a novel backward punch shape", International Journal of Structural Integrity, Vol. 14 No. 6, pp. 966-980. https://doi.org/10.1108/IJSI-07-2023-0064
Publisher
:Emerald Publishing Limited
Copyright © 2023, Emerald Publishing Limited