To read this content please select one of the options below:

Friction and wear behaviours of some industrial polyamides against different polymer counterparts under dry conditions

H. Unal (Faculty of Technical Education, University of Sakarya, Adapazari, Turkey)
F. Findik (Faculty of Technical Education, University of Sakarya, Adapazari, Turkey)

Industrial Lubrication and Tribology

ISSN: 0036-8792

Article publication date: 20 June 2008

962

Abstract

Purpose

The present study aims to find out the best polymer/polymer pair in electrical insulating applications. Moreover, the effects of different polymer counterpart and applied load on the friction and wear behaviour of PA 46 + 30%GFR and unfilled PA 66 thermoplastic polymers are to be studied.

Design/methodology/approach

Friction and wear tests vs PA 46 + 30%GFR and PPS + 30%GFR polymer composites were carried out on a pin‐on‐disc arrangement and at a dry sliding conditions. Tribological tests were performed at room temperature under 20, 40 and 60 N loads and at 0.5 m/s sliding speed.

Findings

The results showed that, the coefficient of friction decreases with the increasing of load (up to 40 N) for PA 46 + 30%GFR composite and polyamide (PA) 66 polymer used in this study. However, above 40 N applied load the coefficient of friction increases. The specific wear rate for PA 46 + 30%GFR and PA 66 against PPS + 30%GFR polymer composite counterpart are about in the order of 10−13 m2/N while the specific wear rate for PA 46 + 30%GFR and PA 66 against PA 46 + 30%GFR polymer composite counterpart are in the order of 10−14 m2/N. For PA 46 + 30%GFR composite and unfilled PA 66 polymers tested the specific wear rate values increased with the increment of load. The highest specific wear rate is for unfilled PA 66 against PPS + 30%GFR with a value of 2.81 × 10−13 m2/N followed by PA 66 against PA 46 + 30%GFR with a value of 2.26 × 10−13 m2/N. The lowest wear rate is PA 46 + 30%GFR polymer composite against PA 46 + 30%GFR polymer composite counterpart with a value of 3.19 × 10−14 m2/N. The average specific wear rates for unfilled PA 66 against PA 46 + 30%GFR is 80 times higher than PA 46 + 30%GFR wear rate while specific wear rates for unfilled PA 66 against PPS + 30%GFR is 100 times higher than that of PA 46 + 30%GFR wear rate. From point view of tribological performance, PA 46 + 30%GFR is a more suitable engineering thermoplastic composite materials for electrical contact breaker applications.

Research limitations/implications

In the present work, tribological tests were performed only at room temperature under three different loads and a sliding speed. This is the limitation of the work.

Practical implications

This work is easily used for industrial polyamides to check their tribological behaviours.

Originality/value

This is an original and experimental study and it will be useful both for academicians and for industrial sides.

Keywords

Citation

Unal, H. and Findik, F. (2008), "Friction and wear behaviours of some industrial polyamides against different polymer counterparts under dry conditions", Industrial Lubrication and Tribology, Vol. 60 No. 4, pp. 195-200. https://doi.org/10.1108/00368790810881542

Publisher

:

Emerald Group Publishing Limited

Copyright © 2008, Emerald Group Publishing Limited

Related articles