A neural predictor to analyse the effects of metal matrix composite structure (6063 Al/SiCp MMC) on journal bearing
Abstract
Purpose
To discuss the effects of metal matrix composite (MMC) journal structure on the pressure distribution and, consequently, on the load‐carrying capacity of the bearing are predicted using feed forward architecture of neurons.
Design/methodology/approach
The inputs to the networks are the collection of experimental data. These data are used to train the network using the Batch Back‐prop, Online Back‐prop and Quickprop algorithms.
Findings
The neural network (NN) model outperforms the available experimental model in predicting the pressure as well as the load‐carrying capacity.
Research limitations/implications
The experiment specimens used in this study have been made of MMC with aluminum based reinforced with SiC ceramic particles, using the stir casting technique. Various composite journal structures can be investigated.
Practical implications
The simulation results suggest that the neural predictor would be used as a predictor for possible experimental applications on modelling journal bearing system.
Originality/value
This paper discusses a new modelling scheme known as artificial NNs. An experimental and a NN approach have been employed for analysing MMC journal structure for hydrodynamic journal bearings and their effects on the system performance.
Keywords
Citation
Sinanoğlu, C. (2006), "A neural predictor to analyse the effects of metal matrix composite structure (6063 Al/SiCp MMC) on journal bearing", Industrial Lubrication and Tribology, Vol. 58 No. 2, pp. 95-109. https://doi.org/10.1108/00368790610651512
Publisher
:Emerald Group Publishing Limited
Copyright © 2006, Emerald Group Publishing Limited