Search results
1 – 10 of 370Ali Hashemi Baghi and Jasmin Mansour
Fused Filament Fabrication (FFF) is one of the growing technologies in additive manufacturing, that can be used in a number of applications. In this method, process parameters can…
Abstract
Purpose
Fused Filament Fabrication (FFF) is one of the growing technologies in additive manufacturing, that can be used in a number of applications. In this method, process parameters can be customized and their simultaneous variation has conflicting impacts on various properties of printed parts such as dimensional accuracy (DA) and surface finish. These properties could be improved by optimizing the values of these parameters.
Design/methodology/approach
In this paper, four process parameters, namely, print speed, build orientation, raster width, and layer height which are referred to as “input variables” were investigated. The conflicting influence of their simultaneous variations on the DA of printed parts was investigated and predicated. To achieve this goal, a hybrid Genetic Algorithm – Artificial Neural Network (GA-ANN) model, was developed in C#.net, and three geometries, namely, U-shape, cube and cylinder were selected. To investigate the DA of printed parts, samples were printed with a central through hole. Design of Experiments (DoE), specifically the Rotational Central Composite Design method was adopted to establish the number of parts to be printed (30 for each selected geometry) and also the value of each input process parameter. The dimensions of printed parts were accurately measured by a shadowgraph and were used as an input data set for the training phase of the developed ANN to predict the behavior of process parameters. Then the predicted values were used as input to the Desirability Function tool which resulted in a mathematical model that optimizes the input process variables for selected geometries. The mean square error of 0.0528 was achieved, which is indicative of the accuracy of the developed model.
Findings
The results showed that print speed is the most dominant input variable compared to others, and by increasing its value, considerable variations resulted in DA. The inaccuracy increased, especially with parts of circular cross section. In addition, if there is no need to print parts in vertical position, the build orientation should be set at 0° to achieve the highest DA. Finally, optimized values of raster width and layer height improved the DA especially when the print speed was set at a high value.
Originality/value
By using ANN, it is possible to investigate the impact of simultaneous variations of FFF machines’ input process parameters on the DA of printed parts. By their optimization, parts of highly accurate dimensions could be printed. These findings will be of significant value to those industries that need to produce parts of high DA on FFF machines.
Details
Keywords
Ali Hashemi and Parsa Yazdanpanah Qaraei
This paper aims to present an accurate magnetic equivalent circuit for modeling the cylindrical electromagnet so that by analyzing it, the magnetic flux density in different parts…
Abstract
Purpose
This paper aims to present an accurate magnetic equivalent circuit for modeling the cylindrical electromagnet so that by analyzing it, the magnetic flux density in different parts of the electromagnet, as well as its lifting force, can be calculated.
Design/methodology/approach
The structure of the electromagnet is divided into parts that can be modeled by lumped element parameters. Mathematical equations for calculating these elements are presented and proved. The axial symmetry of the cylindrical electromagnet made it possible to use planar circuits for its modeling. To increase the accuracy of the proposed equivalent circuit, attention has been paid to the leakage flux as well as the nonlinear behavior of the ferromagnetic core. Also, the curvature of the magnetic flux path is considered in the calculation of the corner permeances of the core.
Findings
The magnetic flux density in different parts of the electromagnet was calculated using nodal analysis of the circuit and compared to the results of the finite element method. Also, a test bed was established to measure the lifting force of the electromagnet. Comparing the results shows a difference of less than 3% which indicate the good accuracy of the proposed circuit. In addition, due to the curvature of the flux path, there is a no-flux region in the center of the disk, the extent of which depends on the thickness of the disk and the diameter of the middle leg.
Originality/value
Magnetic equivalent circuit is a new contribution to analyze the cylindrical electromagnet and calculate its lifting force with good accuracy. The circuit lumped elements can be quickly calculated using mathematical equations and software such as MATLAB according to the actual path of the magnetic flux. Compared to other methods, the proposed circuit analyzes the electromagnet in a shorter period of time. This is the most important advantage of the proposed circuit model.
Details
Keywords
Ali Hashemi, Hamed Taheri and Mohammad Dehghani
To prevent the coil from burning or getting damaged, it is necessary to estimate the duration of its operation as long as its temperature does not exceed the permissible limit…
Abstract
Purpose
To prevent the coil from burning or getting damaged, it is necessary to estimate the duration of its operation as long as its temperature does not exceed the permissible limit. This paper aims to investigate the effect of switching on the thermal behavior of impregnated and nonimpregnated windings. Also, the safe operating time for each winding is determined.
Design/methodology/approach
The power loss of the winding is expressed as a function of the winding specifications. Using homogenization techniques, the equivalent thermal properties for the homogenized winding are calculated and used in a proposed thermal equivalent circuit for winding modeling and analysis. The validity and accuracy of the proposed model are determined by comparing its analysis results and simulation and measurement results.
Findings
The results show that copper windings have better thermal behavior and lower temperature compared to aluminum windings. On the other hand, by impregnating or increasing the packing factor of the winding, the thermal behavior is improved. Also, by choosing the right duty cycle for the winding current source, it is possible to prevent the burning or damage of the winding and increase its lifespan. Comparing the measurement results with the analysis results shows that the proposed equivalent circuit has an error of less than 4% in the calculation of the winding center temperature.
Research limitations/implications
In this paper, the effect of temperature on the electrical resistance of the coil is ignored. Also, rectangular wires were not investigated. Research in these topics are considered as future work.
Originality/value
By calculating the thermal time constant of the winding, its safe operation time can be calculated so that its temperature does not exceed the tolerable value (150 °C). The proposed method analyzes both impregnated and nonimpregnated windings with various schemes. It investigates the effects of switching on their thermal behavior. Additionally, it determines the safe operating time for each type of winding.
Details
Keywords
Ali Hashemi, Parsa Yazdanpanah Qaraei and Mostafa Shabanian-Poodeh
The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies…
Abstract
Purpose
The aim of this paper is to provide a simple yet accurate and efficient geometric method for thermal homogenization of impregnated and non-impregnated coil winding technologies based on the concept of thermal resistance.
Design/methodology/approach
For regular windings, the periodic microscopic cell in the winding space is identified. Also, for irregular windings, the average microscopic cell of the winding is determined. An approximation is used to calculate the thermal resistance of the winding cell. Based on this approximation, the winding insulation is considered as a circular ring around the wire. Mathematical equations are obtained to calculate the equivalent thermal resistance of the cell. The equivalent thermal conductivity of the winding is calculated using equivalent thermal resistance of the cell. Winding thermal homogenization is completed by determining the equivalent thermal properties of the cell.
Findings
The thermal pattern of different windings is simulated and compared with the results of different homogenization methods. The results show that the proposed method is applicable for a wide range of windings in terms of winding scheme, packing factor and winding insulation. Also, the results show that the proposed method is more accurate than other winding homogenization methods in calculating the equivalent thermal conductivity of the winding.
Research limitations/implications
In this paper, the change of electrical resistance of the winding with temperature and thermal contact between the sub-components are ignored. Also, liquid insulators, such as oils, and rectangular wires were not investigated. Research in these topics is considered as future work.
Originality/value
Unlike other homogenization methods, the proposed method can be applied to non-impregnated and irregular windings. Also, compared to other homogenization methods, the proposed method has a simpler formulation that makes it easier to program and implement. All of these indicate the efficiency of the proposed method in the thermal analysis of the winding.
Details
Keywords
Ali Hashemi, Parsa Yazdanpanah Qaraei and Mostafa Shabanian
An excessive increase in temperature will reduce the lifespan and even burn the coil. The variety of materials in the structure of the electromagnet along with its multi-layer…
Abstract
Purpose
An excessive increase in temperature will reduce the lifespan and even burn the coil. The variety of materials in the structure of the electromagnet along with its multi-layer winding creates a complex and heterogeneous thermal structure. There are very few researches that are completely focused on the thermal analysis of electromagnets. The purpose of this paper is to provide an accurate, yet fast and simple method for the thermal analysis of cylindrical electromagnets in both transient and steady-state modes. For this purpose, a thermal equivalent circuit (TEC) is presented based on the nodding approach.
Design/methodology/approach
The results of TEC analysis of cylindrical electromagnet, for two orthogonal and orthocyclic winding coil technologies, were compared with the results of the thermal simulation in COMSOL. The authors also built a laboratory model of the cylindrical electromagnet, similar to those analyzed and simulated, and measured the temperature in different parts of it.
Findings
The comparison of the results obtained from different methods for the thermal analysis of the cylindrical electromagnet indicates that the proposed TEC has an error of less than 2%. The simplicity and high accuracy of the results are the most important advantages of the proposed TEC.
Originality/value
Comparing the information and results related to winding schemes, indicates that the orthogonal winding has less cost and weight due to the shorter length of the wire used. On the other hand, orthocyclic winding generates lower temperature and has more lifting force, and is simpler to implement. Therefore, in practice, orthocyclic winding technology is usually used.
Details
Keywords
Abbas Ali Daryaei and Yasin Fattahi
This study is primarily aimed at investigating the asymmetric impact of institutional ownership on the relationship between stock liquidity and stock return. It was conducted by…
Abstract
Purpose
This study is primarily aimed at investigating the asymmetric impact of institutional ownership on the relationship between stock liquidity and stock return. It was conducted by testing the hypotheses regarding efficient monitoring and adverse selection from Tehran Stock Exchange (TSE).
Design/methodology/approach
Using a panel smooth transition regression model and selecting 183 firms for the period from 2009 to 2019 from TSE, this study examined the data to explore the asymmetric impact of institutional ownership on the relationship between stock liquidity and stock return.
Findings
The results show a positive impact by institutional ownership on the relationship between stock liquidity and stock return in the first regime (threshold level 39%), whereas in the second regime, there is a negative impact by institutional ownership on the relationship between stock liquidity and stock return. Furthermore, the firms were divided into two groups based on the market value. The first group includes those with a market share less than the mean total market value of the sample. The second group includes firms with a market share higher than the mean total market value of the sample (large firms). The results illustrate that the threshold level is 32% and 44% for the first and second groups, respectively.
Originality/value
The findings of this study suggest that institutional ownership theories require closer inquiry.
Details
Keywords
Politicians will increasingly look to presidential polls due in 2021, further weakening the incumbent. The external environment remains largely unfavourable.
Details
DOI: 10.1108/OXAN-DB253135
ISSN: 2633-304X
Keywords
Geographic
Topical
MALTA: EU will try harder against money laundering
Details
DOI: 10.1108/OXAN-ES239695
ISSN: 2633-304X
Keywords
Geographic
Topical
Soroush Sadripour, Mohammad Estajloo, Seyed Abdolmehdi Hashemi, Ali J. Chamkha and Mahmoud Abbaszadeh
The purpose of this study is to reduce energy consumption in bakeries. Due to fulfill this demand, quite a few parameters such as energy and exergy efficiency, energy waste and…
Abstract
Purpose
The purpose of this study is to reduce energy consumption in bakeries. Due to fulfill this demand, quite a few parameters such as energy and exergy efficiency, energy waste and fuel consumption by different traditional flatbreads bakeries (Sangak, Barbari, Taftun and Lavash should be monitored and their roles should not be neglected.
Design/methodology/approach
In the present study, experimental measurements and mathematical modeling are used to scrutinize and investigate the effects of the aforementioned parameters on energy consumption by bakeries.
Findings
The results show that by doing reported methods in this paper, the wasted energy of the walls can be decreased by about 65 per cent; and also, by controlling the combustion reaction to perform with 5 per cent excess air, the wasted energy of excess air declines by about 90 per cent. And finally, the energy and exergy efficiency of bakeries is increased, and as a result, the annual energy consumption of Sangak, Barbari, Taftun and Lavash bakeries diminish about 71, 59, 57 and 40 per cent, respectively.
Originality/value
As evidenced by the literature review, it can be observed that neither numerical studies nor experimental investigations have been conducted about energy and exergy analyses of Iranian machinery traditional flatbread bakeries. It is clear that due to a high preference of Iranians to use the traditional bread and also the popularity of baking this kind of bread in Iran, if it is possible to enhance the traditional oven conditions to decrease the loss of natural gas instead of industrializing the bread baking, the energy consumption in the country can be optimized.
Details
Keywords
A.S. Dogonchi, Muhammad Waqas, S.R. Afshar, Seyyed Masoud Seyyedi, M. Hashemi-Tilehnoee, Ali J. Chamkha and D.D. Ganji
This paper aims to study the impacts of viscous dissipation, thermal radiation and Joule heating on squeezing flow current and the heat transfer mechanism for a…
Abstract
Purpose
This paper aims to study the impacts of viscous dissipation, thermal radiation and Joule heating on squeezing flow current and the heat transfer mechanism for a magnetohydrodynamic (MHD) nanofluid flow in parallel disks during a suction/blowing process.
Design/methodology/approach
First, the governing momentum/energy equations are transformed into a non-dimensional form and then the obtained equations are solved by modified Adomian decomposition method (ADM), known as Duan–Rach approach (DRA).
Findings
The effect of the radiation parameter, suction/blowing parameter, magnetic parameter, squeezing number and nanoparticles concentration on the heat transfer and flow field are investigated in the results. The results show that the fluid velocity increases with increasing suction parameter, while the temperature profile decreases with increasing suction parameter.
Originality/value
A complete analysis of the MHD fluid squeezed between two parallel disks by considering Joule heating, thermal radiation and adding different nanoparticles using the novel method called DRA is addressed.
Details